

Overview and Goal of Calibration and Imaging Working Group

Keith Grainge

(Wijnholds, Grainge, Nijboer document in prep)

Overview and Goal

Limits to Imaging

- What limits the final map sensitivity?
 - Thermal noise (A/T; integration time)
 - Confusion noise (source counts; maximum baseline)
 - Calibration errors
- Related question of image fidelity
 - Issues of station and array configuration; uv-plane coverage
- Key questions: how accurate must calibration be such that it is not limiting performance? How do we achieve this?

AA Calibration

- Aim is overall model for calibration of entire AA system
 - Investigate calibration requirements at all sub-system levels
 - Comment on specs; guide design decisions
- Eventually will be limited by non-linear effects of systematics
 - Need to consider interaction of various errors
- Scope: SKA Phase I is initial priority
- Also take forward Phase II considerations

- Experience from existing mature telescopes
- Lessons from pathfinders
 - LOFAR, MWA, EMBRACE, AAVS ...
 - Will become increasingly important
 - Especially for identifying "sub-optimal" design choices
- Simulations
- Theoretical studies

"Estimation noise"

- Self-calibration will be required to reach desired dynamic range
- Estimation of calibration parameters extracts information from the data
 - Effective noise in the image increases with number of calibration parameters
 - Imposes a stability requirement

Imaging issues

- What is required accuracy in knowledge of station beam? (Smirnov)
 - Translate this into tolerance requirements on physical parameters
 - Also determines the hierarchical level to which calibration is required
 - e.g. Individual beam former weights for each element of an AA-mid?
- How do we measure/assess image fidelity?

Calibration with astronomical sources

- Do astronomical sources provide sufficient SNR for accurate estimation of calibration parameters?
- Particularly an issue for time varying DDEs
- A sensitivity issue
 - Timescale
 - Collector area; bandwidth etc
- E.g. lonosphere and implications for filling factor as a function of frequency (Wijnholds)
- May require specific calibration hardware to be built

Polarisation

- Standard polarimetric performance (co-, cross- pol) is not meaningful for AAs
 - Use IXR instead (Carozzi)
- Are element level polarimetric corrections required?
 - Apply during beamforming
 - Only one point in FoV correct
 - A LOFAR study exists

- AA elements very strongly coupled
- Use macro basis fns (Craeye)
- Issues: sparceness; configuration; channel bandwidth

- Station beam from Array factor and mean embedded element pattern (Razavi-Ghods, Lera Acedo)
- Array factor: configuration; convolutional gridding; FFT
- Interpolation for different directions and frequencies

Station configuration

- Bright sources in sidelobes are a major issue
- How best to assess station beam shapes?
 - Some useful metrics exist (Zarb-Adami)
- Need to consider interferometric case
- Seemingly sensible criteria may not lead to optimum design in practice

Simulation: OSKAR2

- Oxford OeRC: Salvini, Mort and Dulwich
- Simulates AA visibility measurement sets
- Very powerful tool for investigating calibration
 - Extended / polarised sources in sidelobes
 - System design aspects e.g. element geometry / alignment errors
- How best to analyse the results?

Other Calibration Issues

- What is allowable gain/phase error in analogue chain
 - Encompasses all electronic and temperature effects
- Absolute amplitude calibration
- Can calibration be applied in real time?
- Beam formation
 - Bandpass changes; filter performance (aliasing)
 - Sample bit count through processing chain
 - What levels of frequency / time smoothing can be applied

- Increasing maturity of simulations allows:
 - Simulation / comparison with existing instruments
 - Calibration "Challenges" data sets
 - Provides focus; creates interest
 - Drive to formulate problem well
 - Define a metric
 - Extremely useful approach in other fields

- Calibration critical to realise potential sensitivity
- Guide AA design decisions at station and system level
- Will specific calibration hardware be required?
- Address issues with pathfinders and simulation tested against measurements
- A great deal of progress in many areas
- Simulations should be extremely powerful ways of investigating several issues