

Improving the Scalability of Calibration

Stef Salvini Stef.salvini@oerc.ox.ac.uk

(+ S.Winjholds, O.Smirnov, K.Zarb-Adami, B.Mort, F.Dulwich)

Content

- What is StEfCal
- Application to Antenna Calibration
- Applications to Selfcal
 - WSRT
 - LOFAR

StEfCal in a Nutshell

- StEfCal
 - Oleg Smirnov's nickname (not mine!!!)
 - Statistical Efficient Calibration (thanks to Stefan W!!)
- Stefcal is
 - A fast algorithm for specific optimisation problems
 - **I** It relies on the nature of these problems
 - It improves over existing methods for these problems
- Stefcal is not
 - A general optimisation method
 - No replacement to LM
 - A general solver for RA outside its range of applicability
 - A substitute for selfcal
 - Though it seems to make it more efficient

Algorithm

- Some of the material already presented in December at AAVP
 - Revised and extended since
 - Maths foundations much elucidated
- O(N²) floating-point operations throughout
- L₂ (least-squares) minimisation
 - **D** For minimizing $|| M G D GH ||_{F}$
 - M: model; D: data; G: diagonal or block-diagonal
 - Distance between model sky and calibrated observation
- Accuracy and robustness
- In particular w.r.t. Incomplete visibilities
 - Missing baselines
 - Partial cross-correlation
- Limited dependency on the model sky complexity

The L_2 step

- Levenberg-Marquardt etc. very expensive
- The new algorithm seeks for the zeros of the norm of the gradient of the χ^2 of the data (*D*) model sky (*M*)

 $\underline{\nabla} \| D - G^H M G \|_F^2$

- Where G (complex gains) is
 - Diagonal complex when polarisations are not coupled
 - 2x2 block diagonal (one block per antenna) when polarisations are uncoupled
- Same formalism used for both cases
- Number of operations: O(N₂)

Two Algorithms in one?

- It can minimise
 - Difference between visibilities
 - General case: many sources
 - difference between dominant eigenspaces of Model and observed visibilities
 - few bright sources: better stability, faster convergence
- Incorporates
 - Good termination criterion (norm of gradient)
 - **D** Stopping criteria
 - Too slow convergence
 - Unable to improve
 - Good termination
 - **D** Better than LM, Interior point, etc in all cases examined

Antenna calibration

From the measurement equation

$$V^{obs} = \Gamma \cdot V \cdot \Gamma^H$$

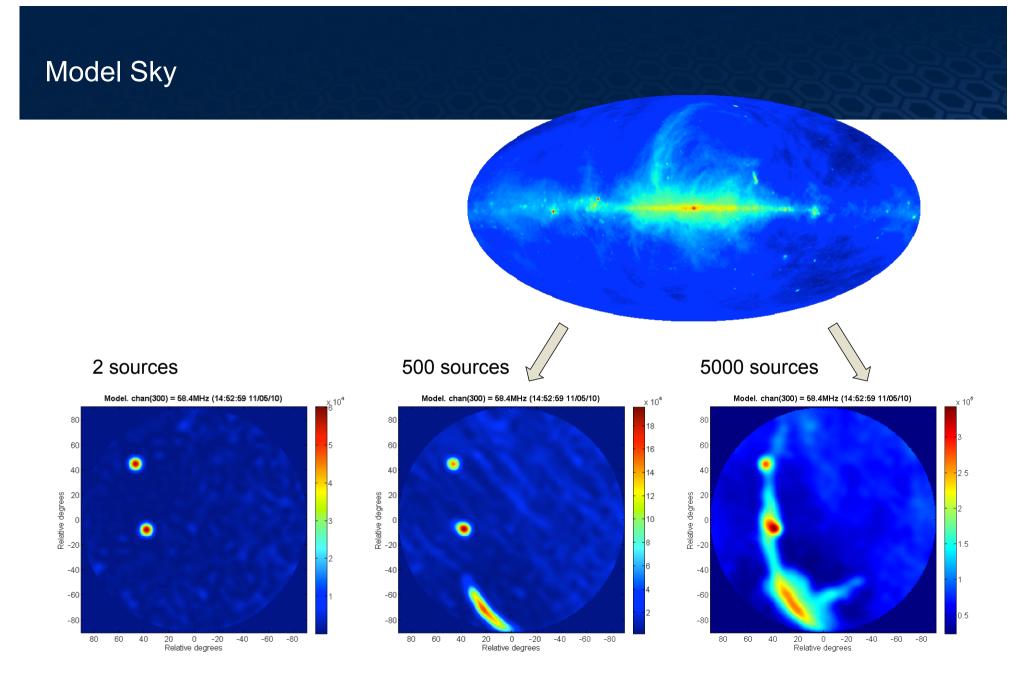
Where

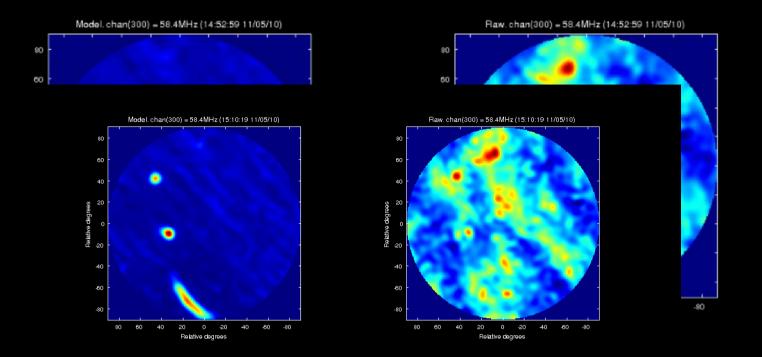
□ Complex gain Γ is diagonal

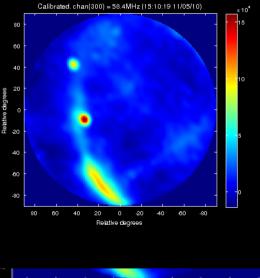
$$\Gamma = G \cdot \Phi$$
 $\Phi = \operatorname{diag}(e^{i\phi_j})$

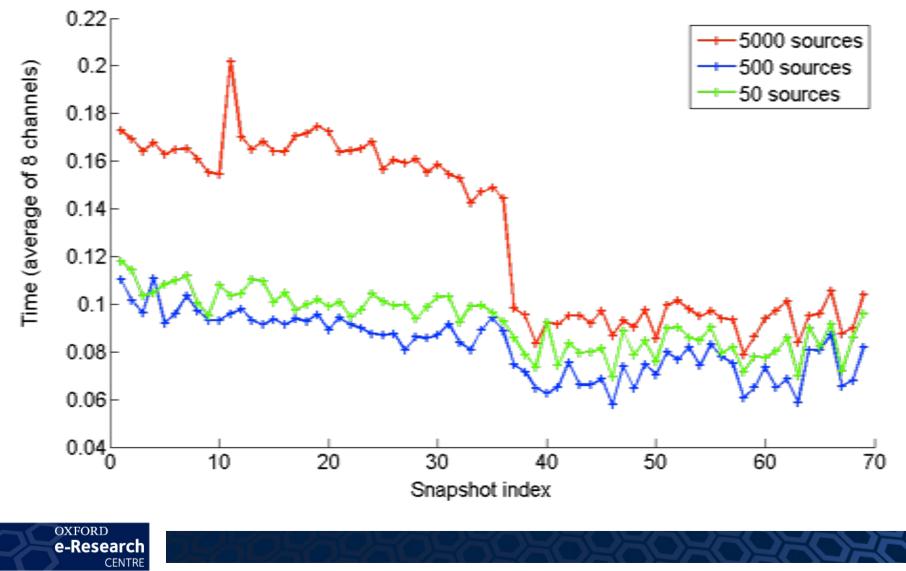
Hence

Error of phases only, unitary transformation: easy problem


□ Error of gains: difficult problem – it "scrambles" the eigenvalues

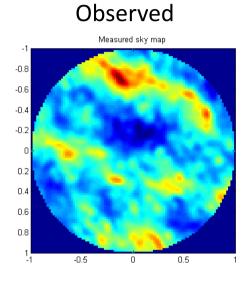

Chilbolton LBA LOFAR Station


- Chilbolton LBA LOFAR station data
 - Thanks to Griffin Foster (OU)!
- Channel 300: 58.4 MHz
 - Other channels also available
 - Sequence of snapshots
 - Observations spaced by ~520 seconds
- Model sky of increasing complexity
 - 2 sources
 - 500 sources
 - **5**,000 sources



Timing and performance

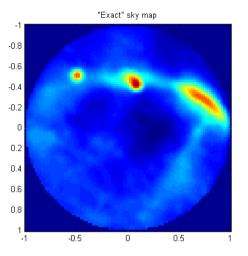
Simulated Sky


Antennas

- □ STD of gains errors ~ 50%
- **D** STD of phase errors: $\sim 2 \pi$ rad
- Noise:
 - equivalent to 150 K
 - Diagonal elements of noise: $V_{ii} = kT_i = \sigma_i^2$
 - Off-diagonal elements of noise: $V_{ij} = G\left(0, \sqrt{\frac{\sigma_i \sigma_j}{M}}\right)$ G is Gaussian random variate, with M the number of integration points
- Number of integration points M = 1,000,000
 - Corresponding to sampling rate 1 GHz, channelised into 1,000 channels, integrated for 1 second

Simulated Sky

96 antennas (LOFAR)



Measured sky map

0

0.5

Exact

Calibrated

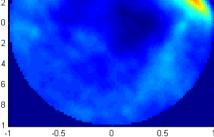
Calibrated image

-0.8

-0.6

-0.4

-0.2


0.2

0.4

0.6

0.8

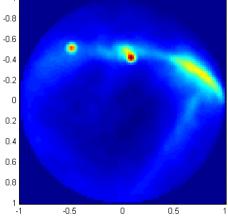
-0.5

-0.8 -0.6 -0.4 351 antennas -0.2 (~ SuperTerp) 0 0.2 0.4

0.6

0.8

1


-0.5

"Exact" sky map -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 -0.5 0 0.5

Calibrated image

0

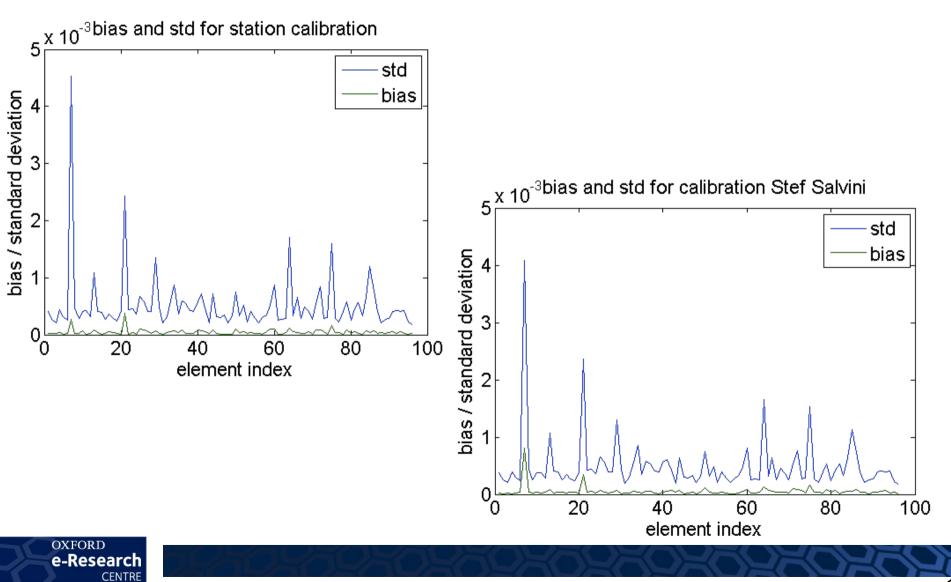
0.5

Some performance figures

N. Antennas	Stefan W		Stef S	
	Time (sec)	Normwise error in G	Time (sec)	Normwise error in G
96 (LOFAR)	0.403	0.204	0.015	0.240
351 (~ SuperTerp)	11.58	0.110	0.058	0.103
1,000 (~ SKA1 station)	273.74	0.069	0.381	0.034

- Simulated sky (GSM 25,000 sources) + receiver noise
- 200 sources used for calibration
- MATLAB code
- My own laptop (Intel Core 2 i7, 2.0 GHz, Windows

Some more performance figures


N. Antennas	Stefan W		Stef S	
	Time (sec)	Normwise error in G	Time (sec)	Normwise error in G
96 (LOFAR)	0.243	0.169	0.026	0.197
351 (~ SuperTerp)	10.13	0.076	0.054	0.094
1,000 (~ SKA1 station)	239.85	0.048	0.400	0.033

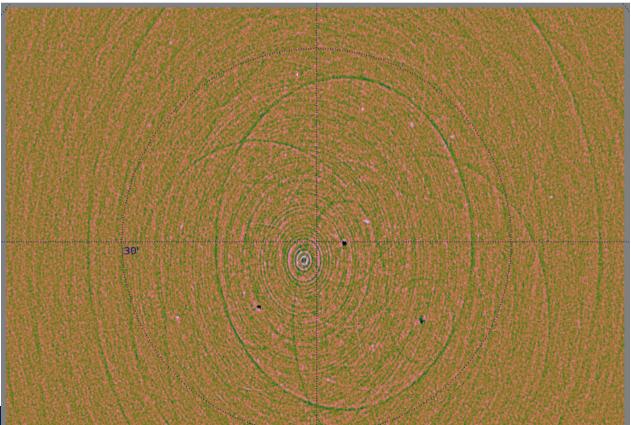
- Same as previous table
- Reduced baselines: (>= 35% of maximum baselines)

Bias & STD compared to Stefan W

16¹⁶

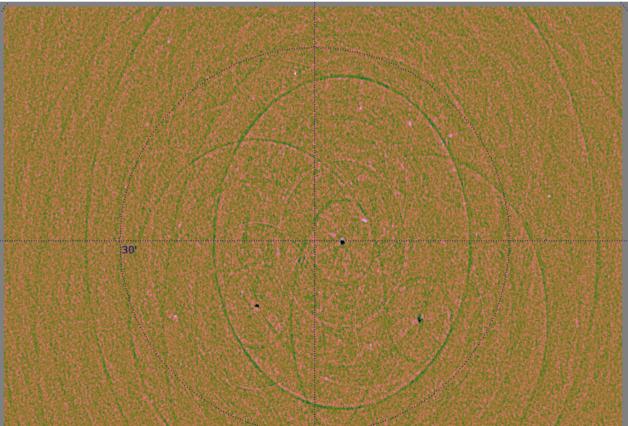
Stefcal: Adapting To Selfcal

- The same math should (in principle) work for the interferometer calibration case
 - □ i.e. use a prior sky model (LSM), and solve for per-station gains
- Main difference is, everything is a function of frequency and time
 - as opposed to single snapshot
- <u>Quick-and-dirty</u> Python implementation now available in MeqTrees


Stefcal with WSRT

- Using 3C147 as a test case
- ~1500 timeslots, 28 channels, 74 baselines
- Runtime ~1m40s (of which ~half in the solver)
- Compare to MeqTrees+LSQ selfcal: ~10m
 - ...or just to regenerate the residuals (or corrected data) using prior LSQ solutions: ~3m
- Faster to recalibrate than to load solutions!

But are the results identical?


- In a nutshell: YES
- Same residuals (to all intents and purposes)
- Remaining artefacts (both selfcal and stefcal):
 - □ (DDEs)
 - interferometer errors
- MeqTrees can solve for the latter in a separate pass, in 3-4 m

Per-interferometer errors

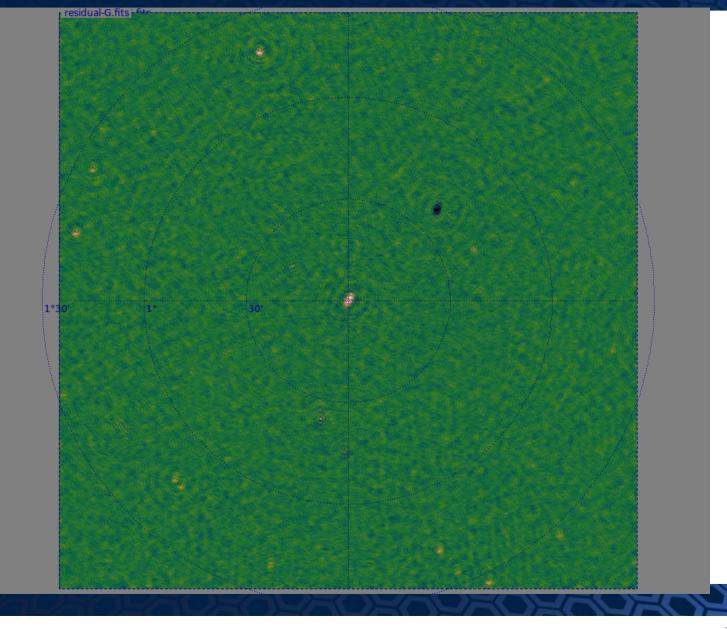
- Extended stefcal to solve for these too
- Runtime: ~0s
- Integrated into the regular solve loop at virtually zero cost
- (strictly speaking, need a second stefcal pass to apply)

Original algorithm formulated for a "scalar" case

$$D_{pq} = G_p M_{pq} G_q^H$$

□ where **G**'s are diagonal

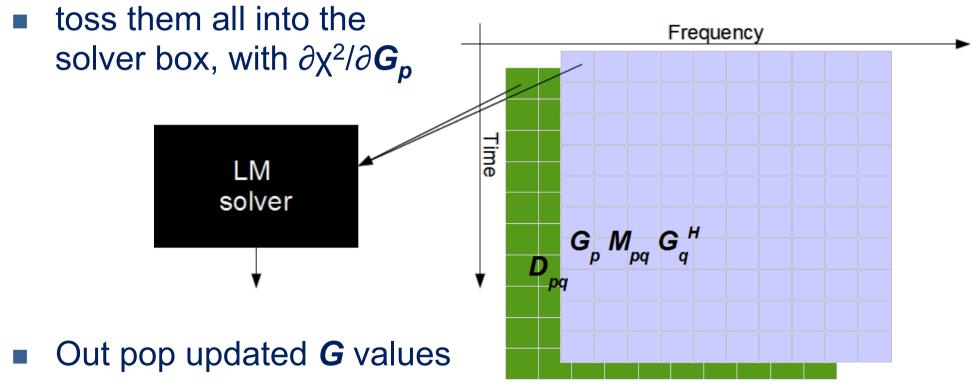
- □ (and this was used for the 3C147 reduction)
- LOFAR needs 2x2 right off the bat
- Reformulated the algorithm to use full 2x2 Jones matrices instead


LOFAR Double-Double

D-D observation

- Flagged, demixed and averaged in time
- 1240 timeslots (7h), 1 channel, 990 baselines
- □ ~40 sources in the LSM
- Doing full 2x2 G-Jones solution <u>w/o the beam</u>
- MeqTrees+LSQ runtime: ~15m
 (BBS ~30m)
- MeqTrees+Stefcal: ~2m
 of which ~half in the solver

LOFAR DD



Scaling

	WSRT (14) 74 baselines 28 ch 1437 t/s 300 sources	LOFAR (45) 990 baselines 1 ch x 1280 t/s 42 sources full 2x2 solution	MeerKAT (64) 2016 baselines 8 ch x 480 t/s 884 sources	SKA1 (256)
MeqTrees stefcal time	1m40s	2m20s	3m	
MeqTrees selfcal (LSQ) time	10m	15m	24m	
"pure" stefcal time (minus I/O and model predict)	1m	1m15s Th	1m20s ne Stefcal time	
"pure" selfcal time	~9m	~13m	~22m	
speedup	x9	x11	x16	xSilly
OXFORD e-Research CENTRE	LHOLDS	40250X0		KOX70

What's going on here?

- Selfcal: find **G** to minimize $D_{pq} G_p M_{pq} G_q^H$
- Each t/f point is a set of χ^2 -equations (per baseline)

Rinse and repeat, until it converges

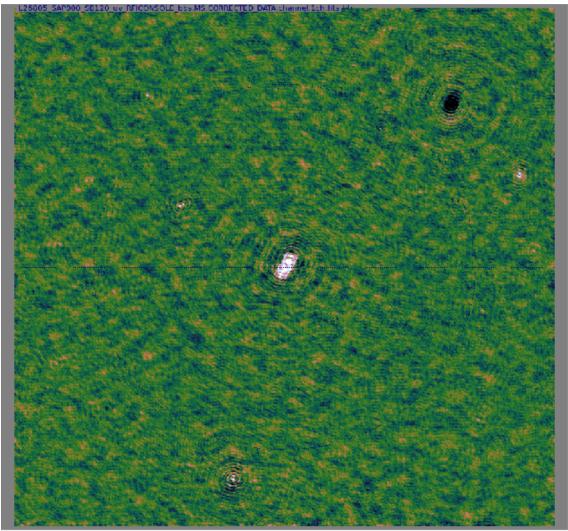
The Stefcal Version: Linearizing the RIME

- Find G to minimize D_{pq} G_p M_{pq} G(0)_q^H
 Where G(0) is the value from the previous iteration
- But this is just a linear equation!
- Can just write out the **G** updates directly:

$$G_p = \sum_p D_q Y_{pq}^{H} \left(\sum_q Y_q Y_q^{H} \right)^{-1}$$
, where $Y_p = M_{pq} G_{(0)pq}^{H}$

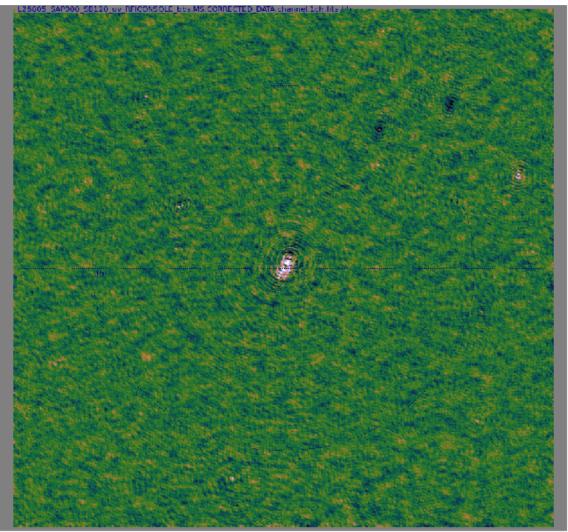
- This gives us one <u>approximate</u> update step
- Rinse & repeat until it converges
 - (With some clever averaging essential to achieve convergence)

- For N antennas, model predict scales as N²
 There are N² baselines after all...
- LM (or any least-squares) scales as N³ due to matrix inversion
- Stefcal update step scales as N²
 - ...and is very cheap to compute
 -so we can do many fast iterations
- No need for derivatives!
 - Cheap on RAM
 - Can process entire WSRT/LOFAR MS in one gulp

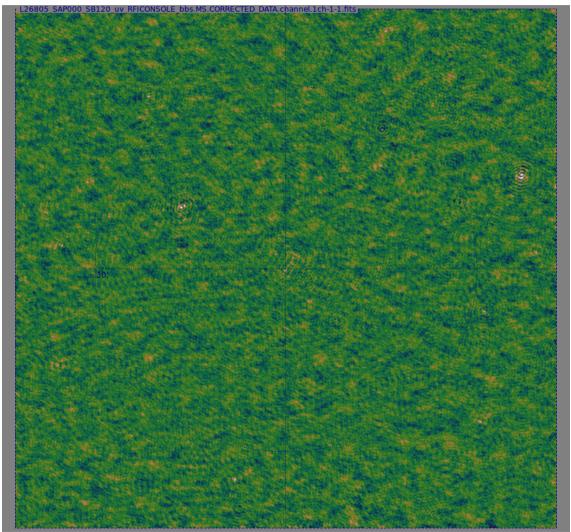

Stefcal & differential gains

- Stefcal adapted for differential gains
- Use Stefcal iteratively
- So far, preliminary studies (O.Smirnov, S.Salvini) proved fast and accurate

Does it work for LOFAR?


- Yes, though more testing needed
- LOFAR DD field, 2 directions: 7m
- Scales linearly with # of directions 9 directions: ~20m
- Bonus: improves G at the same time

Does it work for LOFAR?


- Yes, though more testing needed
- LOFAR DD field, 2 directions: 7m
- Scales linearly with # of directions 9 directions: ~20m
- Bonus: improves G at the same time

Does it work for LOFAR?

- Yes, though more testing needed
- LOFAR DD field, 2 directions: 7m
- Scales linearly with # of directions 9 directions: ~20m
- Bonus: improves G at the same time

Solution Intervals

- Direction-dependent solutions need to be solved for on longer time intervals than G
- Up till now, we achieved this by solving for e.g. one *dE* value per block of *M* timeslots
- Very difficult to mix-and-match intervals in LSQ
- Hence, first do G (Δt=1), then dE (Δt=120)
- In the stefcal update step calculation, larger solution intervals are just an extra summation.
 - Much cheaper than standard approach
 - **D** Smoothing possible
- Low extra computational cost (~ 20 %) when using a *sliding* average
 - Same results as sliding selfcal

Piecewise vs. smooth *dE*s

₃33

In Conclusion: What's The Catch?

- Classic selfcal (and Levenberg-Marquardt) is not necessarily optimal, so why does there have to be one?
- Convergence heuristics needs further improvement
 - ...but then, we don't understand selfcal either really
 - □ so stefcal we don't understand too, just x10 speed improvemnt
- More testing needed, especially the 2x2 case
 And especially peeling...
- Quick-and-dirty Python implementation can be rewritten
- The "fast" version (SVD) can be adapted to stefcal
- More gains (factor of several) readily available

