

OSKAR-2: Simulating data from the SKA

AACal 2012, Amsterdam, 13th July 2012

Fred Dulwich, Ben Mort, Stef Salvini

Overview

- OSKAR-2: Interferometer and beamforming simulator package.
- Intended for simulations of SKA₁ aperture arrays.
- Based on full-sky Measurement Equation formalism.
 –"Brute force," 3D, direct evaluation approach.
- Takes advantage of large computational power offered by modern GPUs via NVIDIA's CUDA API.
 - -Scale up to large aperture array interferometer simulation.

Measurement Equation

• The ME as implemented by OSKAR-2

$$\langle \mathbf{V}_{p,q} \rangle = \sum_{s} \mathbf{K}_{p,s} \mathbf{E}_{p,s} \mathbf{G}_{p,s} \mathbf{P}_{p,s} \mathbf{R}_{p,s} \langle \mathbf{B}_{s} \rangle \mathbf{R}_{q,s}^{H} \mathbf{P}_{q,s}^{H} \mathbf{G}_{q,s}^{H} \mathbf{E}_{q,s}^{H} \mathbf{K}_{q,s}^{H}$$

- Baseline *p*, *q* for all visible sources, *s*.
- **B** Source brightness.
- R Parallactic angle rotation.
- **P** Propagation term.
- G Antenna element field pattern.
- E Station beam.
- K Interferometer phase.
- V Complex visibility.

... and any others required!

3

Measurement Equation

New (since December 2011)

- Usability improvements:
 - -Simple GUI and scriptable simulation applications.
- Extended sources.
- Element pattern evaluation now implemented on GPU.
- (Ideal) dipole rotation allowed within station.
- Can use FITS images directly as sky models.
- Addition of visibility noise (currently in testing).
- Planned:
 - lonospheric model.
 - -Multiple antenna types per station.
 - -Hierarchical stations.

Sky Model

- Equatorial point source model.
- Extended objects modelled as large collections of pixels.
- "Large" could easily be ~ 10⁶ sources across whole sky!

$$\langle \mathbf{B} \rangle = \begin{bmatrix} I + Q & U + iV \\ U - iV & I - Q \end{bmatrix}$$

Antenna Field Pattern (G-matrix)

- The average embedded element pattern for antennas within a station
- Antenna data given in tabular form:
 - Fit bicubic B-splines to nodal points to construct surface with continuous derivatives.
 - Evaluate spline coefficients to get antenna response at each source position.

Station Beams (E-matrix)

- OSKAR-2 evaluates every station beam (i.e. for every aperture array) at every source position.
- This incorporates all effects at the station level, e.g. phase and gain errors, different beamforming schemes, antenna patterns...

Station Phases (K-matrix)

- K-matrix effectively "phases-up" the array of stations.
- Compute phase of each source *s* at every station *a*.
 - Determine station (u,v,w) coordinates by rotating (x,y,z) onto a plane perpendicular to direction of phase centre.

$$\mathbf{K}_{s,i} = \exp\left\{-2\pi i k \begin{bmatrix} \mathbf{u}_i \boldsymbol{\xi}_s + \mathbf{v}_i \boldsymbol{\eta}_s + \\ \mathbf{w}_i \left(\sqrt{1 - \boldsymbol{\xi}_s^2 - \boldsymbol{\eta}_s^2} - 1\right) \end{bmatrix}\right\}_{\text{Phase centre}}$$
Phase centre is the second se

"Correlator"

• Multiplies Jones matrices with the source brightness to obtain a complex visibility per source and per baseline.

$$\mathbf{V}_{i,j} = \sum_{s} \mathbf{J}_{s,i} \mathbf{B}_{s} \mathbf{J}_{s,j}^{*}$$

- Time-average smearing: each visibility point can be averaged over time.
 - K is recomputed to include motion of baseline during integration period.
 - E is allowed to vary throughout the integration at a slower rate than K.
- Bandwidth smearing: multiply each visibility by $f_{s,i,j}$ before collapsing the source dimension.

$$f_{s,i,j} = \frac{\sin(\pi D_{i,j} \xi_s \Delta v / c)}{\pi D_{i,j} \xi_s \Delta v / c}$$

The OSKAR Package

- OSKAR-2 consists of a library and some simulation applications:
 - oskar_sim_interferometer
 - oskar_sim_beam_pattern
 - oskar_imager
 - oskar (simple GUI to edit settings files)
 - $-\ldots$ and some command-line utilities to allow easy scripting of simulations.
- All computationally intensive functions carried out using NVIDIA CUDA.
- Can be used with multiple GPUs for very large simulations.
- Output can be written to measurement set.

OSKAR-2 Settings

- Plain-text settings file (INI format) can be edited by hand.
 - Consists of key, value pairs.
- All parameters can be set using simple GUI.
 - Can easily hide settings not of interest.
 - Highlights required parameters, and those not at default values.

Gutput telescope directory

Interferometer settings

Sky Model

- Text files contain columns describing, for each source:
 - -Apparent Right Ascension
 - -Apparent Declination
 - -Stokes I
 - -Stokes Q *
 - -Stokes U *
 - -Stokes V *
 - -Reference Frequency *
 - -Spectral Index *
 - -Gaussian FWHM (major axis) *
 - -Gaussian FWHM (minor axis) *
 - -Gaussian Position Angle *

Example sky model 220.0, 50.0, 0.1 2 220.1, 50.1, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0, 80, 30, 25 219.9, 49.9, 0.1, 0.0, 0.1 5 6

Telescope Model

- Directory structure containing text files describing layout at each level of the telescope:
- my_telescope_model/
 - -station001/
 - config.txt [describes configuration of station 1]
 - -station002/
 - config.txt [describes configuration of station 2]
 - -station003/
 - config.txt [describes configuration of station 3]
 - -... [other station directories]
 - -config.txt [describes layout of stations in interferometer]
- Each station directory may also contain (different) embedded element pattern data files.

Telescope & Station Configuration

- Text files ('config.txt') contain columns describing:
 - -x (East) coordinate.
 - -y (North) coordinate.
 - -z (up) coordinate. *
- Station files may also contain:
 - -Element x position error. *
 - -Element y position error. *
 - -Element z position error. *
 - -Systematic gain factor. *
 - -Time-variable gain factor standard deviation. *
 - -Phase offset. *

e-Research

- -Time-variable gain standard deviation. *
- -Element complex multiplicative beamforming weight. *
- -X dipole axis azimuth angle. *
- -Y dipole axis azimuth angle. *

Some Example Simulations

Some Example Simulations

- Telescope model consisting of:
 - -50 stations
 - in a log-spiral, 3-arm configuration
 - -with maximum baseline 100 km,
 - -each a 180-m diameter aperture array,
 - -containing 10000 randomly placed antennas.
- Observation parameters:
 - -Observing at 100 MHz,
 - -for 8 hours on 1 Jan 2000,
 - -for a telescope at latitude 50 degrees (0 degrees longitude),
 - -(720 visibility dumps 40 seconds apart),
 - -updating fringe every 0.2 seconds for time-average smearing,
 - -and bandwidth smearing for 150 kHz channel.

- 1. Canonical sky model (17 3C sources), looking at a 100 mJy source a long way from any other.
- 2. Canonical sky model (17 3C sources), looking at a 100 mJy source with Cas A in the first sidelobe.
- 3. Fictitious sky model containing some polarised and extended sources.

Layouts

50 stations (max baseline ~ 100 km).

10000 elements, 180 m diameter.

Example 1: 100 mJy source in quiet part of sky

Time synthesis

Time snapshots

Example 2: 100 mJy source with Cas A in first sidelobe

Example 2: 100 mJy source with Cas A in first sidelobe (beam)

Example 2: 100 mJy source with Cas A in first sidelobe (Stokes I)

Time synthesis

Time snapshots

Example 3: Fictitious sky model (Stokes I)

Time synthesis

Example 3: Beam patterns

Example 3: Images

Next Steps

- New features (on-going work)
 - Ionosphere model
 - Element patterns per antenna type
 - Hierarchical station model
 - Simulations using dishes
 - Integration with MeqTrees
- Using OSKAR
 - SKA AA phase 1 design studies (single, dual band?)
 - Simulating existing instruments → LOFAR
 - Open questions
 - · Choice of configurations for comparison?
 - · Ability to calibrate and image simulated data?
 - Performance metrics?
- OSKAR release
 - Currently in pre-release (2.0.3-beta)
 - Source code only
 - Documentation and examples available
 - Suggestions? Contact Us!

