A deconvolution scheme for the Murchinson Wide-field Array

Gianni Bernardi Harvard-Smithsonian Center for Astrophysics (team: L.J. Greenhill, D.A. Mitchell, S.M. Ord, M. Clark, R. Edgar)

The problem... (see previous Mitchell's talk)

• Well developed selfcalibration & deconvolution rely on ungridded visibilities (*u*)

MWA generates time averaged images (up to 10 min)

 <u>accounting for position dependent synthesized beam</u>
 pixelization, loss of information limit to the dynamic range

• (you may think that) MWA images cannot be deconvolved, strictly speaking

The problem (cont'd) Similarities with Rau's & Wijnholds' work

• FORWARD MODELING (FM) needed to subtract sources

- any generative model "independent" from the data and <u>related to astrophysical</u> <u>parameters</u>
- generate a sky model
- generate the model *u*'s (MAPS, Wayth et al. 2010)
 including atmospheric and instrumental parameters
- propagate through imaging pipeline
- minimize the difference between the sky images and the forward model fitting for astrophysical parameters & deconvolution
- FM is computationally expensive, but does not require original *u*'s

Application to point source deconvolution of MWA images

Flow chart

• for M sources and N image pixels, the following system of linear equations is solved at each iteration:

$$\delta x = (J^T W J)^{-1} J^T W \delta m$$

• for M sources and N image pixels, the following system of linear equations is solved at each iteration:

$$\delta x = (J^T W J)^{-1} J^T W \delta m$$

vector of 3M parameter increments

N x 3M Jacobian matrix (partial derivatives of the FM with respect to the parameters)

• for M sources and N image pixels, the following system of linear equations is solved at each iteration:

 $\delta x = (J^{T}WJ)^{-1}J^{T}W\delta m$

N x N pixel weight matrix

N-element vector of the difference between the data and the FM

• for M sources and N image pixels, the following system of linear equations is solved at each iteration:

$$\delta x = (J^T W J)^{-1} J^T W \delta m$$

• get a new parameter estimate x_i:

$$x_i = x_{i-1} - \delta x$$

Case 1: 32T 10 min integration

- 16 sources, $S_v > 4$ Jy (LogN-LogS distributed)
- thermal noise
- one 40 kHz channel, 32T coverage
- $\alpha = 4^{h}$ $\delta = -30^{\circ}$; 20° field of view
- 10 min integration:
 - real-time accumulation of 8^s snapshots to 5^m (Healpix resampling)
 - co-add 5^m integrations to 10^m off-line
 - primary beam correction

Initial image (16 sources + thermal noise)

Peak: 97 Jy rms: 2.4 Jy/beam DNR (apparent) ~ 35

One source visible

Initial parameter estimation and subtraction

 estimate params. via Gaussian fit
 subtract (S-curve residual indicates pos'n err.)

• Generate the synthesized beam at the estimated position

• Minimize

Non linear minimization for the brightest source (3 iterations)

Non linear minimization for the 4 brightest sources (3 iterations)

Non linear minimization for the 11 brightest sources (3 iterations)

Non linear minimization for all the 16 brightest sources (3 iterations)

rms ~ 52 mJy/beam final DNR ~ 1900

Case 2: 512T 8 sec integration

- 101 sources, $S_v > 1$ Jy (LogN-LogS distributed)
- thermal noise
- one 40 kHz channel, 512T coverage
- $\alpha = 4^{h}$ $\delta = -30^{\circ}$; 20° field of view
- 8 sec integration:
 - Healpix resampling
 - primary beam correction

Initial image (101 sources + thermal noise)

Peak: 87 Jy rms: 105 mJy/beam DNR (apparent) ~ 800

Many sources visible

Non linear minimization for the 15 brightest sources (5 iterations)

Non linear minimization for the 50 brightest sources (5 iterations)

Non linear minimization for all the 101 sources (5 iterations)

rms ~ 25 mJy/beam

final DNR ~ 3500

How good is FM?

How good is FM?

Case 3: out of beam sources

• 7 sources, $S_v > 6$ Jy (LogN-LogS distributed, the brightest sources of the previous 512T simulation): 5 within the field of view and 2 outside (out-of-beam sources)

- thermal noise
- one 40 kHz channel, 512T coverage
- $\alpha = 4^{h} \quad \delta = -30^{\circ}$; 20° field of view
- 10 min integration:
 - real time accumulation of 8^s snapshots to 5^m (Healpix resampling)
 - co-add 5^m integrations to 10^m off-line
 - primary beam correction

Initial image (7 sources + thermal noise)

Peak: 87 Jy

Non linear minimization for the 5 visible sources (5 iterations)

rms: ~14 mJy/beam

the sidelobes of the out-of-beam sources run through the image

Non linear minimization for the 5 visible + 2 oob sources (5 iterations)

rms: ~2.8 mJy/beam DNR improvement of a factor of ~5

Conclusions

• MWA cannot rely on a traditional selfcalibration & deconvolution

 algebraic non linear minimization can service forward modeling – complement to peeling in visibility space

demonstrated for point sources in simulated images

parameter errors limited by SNRpower spectrum consistent with thermal noise

• minimally sensitive to sidelobe contamination

all sources fit simultaneously

 natural extension to multi-frequency data, diffuse (localized and non) emission, polarized emission.

> • next application to 32T survey data SKA calim 2010, 23/08/10, Dwingeloo

Thank you!