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Radio interferometry

The complex visibility measured by an interferometer is given by the coordinate free definition

V(bλ) =

Z
S2

A(σ)I(σ)e−i2πbλ·σ dΩ .

Expressed in the usual local coordinate system

y(u,w) =

Z
D2

A(l) xp(l) e−i2π[u·l+w (n(l)−1)] d2l
n(l)

=

Z
D2

A(l) xp(l) C(w)
(‖l‖) e−i2πu·l d2l

n(l)
,

where l = (l,m), ‖l‖2 + n2(l) = 1 and the chirp C(w)(‖l‖) is given by

C(w)
(‖l‖) ≡ ei2πw

`
1−
√

1−‖l‖2
´
.

Typically small field-of-view (FOV) assumptions are made with dΩ = d2l/n(l) ' d2l and

‖l‖2 w � 1 ⇒ C(w)(‖l‖) ' 1

‖l‖4 w � 1 ⇒ C(w)(‖l‖) ' eiπw‖l‖2
(Wiaux et al. 2009 [6])
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Spread spectrum phenomenon

Modulation by the chirp spreads the spectrum of the signal.

Recall that for Fourier measurements the compressed sensing (CS) coherence is the
maximum modulus of the Fourier transform on the sparsity basis vectors: µ = maxi,j |f i · ψj|.

Consequently, spreading the spectrum increases the incoherence between the sensing and
sparsity bases, thus improving the performance of CS reconstructions.

(a) Assuming ‖l‖4 w � 1 (b) No small-field assumption

Figure: Real part and imaginary part of chirp modulation for FOV θFOV = 90◦ .

When no small-field assumption is made the chirp modulation contains higher frequency
content ⇒ improved effectiveness of chirp on wide FOV.
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Band-limited signals

Consider signal on the sphere and project onto tangent plane defined by usual
l = (l,m) coordinates.

Ensure a band-limited signal on the sphere is sufficiently sampled on plane when
projected.

Band-limit relations between the sphere and plane:
Small FOV: L ' 2πB
Wide FOV: LFOV ' 2π cos(θFOV/2)BFOV

where L and B are band-limits on the sphere and
plane respectively.

Band-limit relations define sampling resolutions.

Adopt HEALPix pixelisation of the sphere [2].

For wide FOV Np/Ns increases rapidly
⇒ signal less sparse on plane;
⇒ superiority of sphere.
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Figure: Ratio of number of samples on the
plane to the sphere (Np/Ns). Plotted for
L = cNside, with c = 3 (blue); c =
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(black); c = 2 (red).
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Projection operators

Project onto a regular grid on the plane to reduce significantly the computational load
of subsequent analyses through the use of FFTs.

Regridding operation is required → convolutional gridding
(cf. regridding performed when mapping the visibilities observed at continuous
coordinates to a regular grid, also to afford the use of FFTs).

Consider box, Gaussian and sinc kernels.

Select Gaussian kernel due to space-frequency
trade-off (other kernels could also be considered, e.g.
Gaussian-sinc, spheriodal functions).

Incoherence reduced on sphere due to projection P:

µs = max
i,j
|f i · Pψj|,

⇒ hampers CS reconstruction performance;

⇒ employ universality of chirp.

l

m

n

Figure: Projection of a sampled signal from the
sphere to the plane.
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Interferometric inverse problem

Ill-posed interferometric inverse problem:

y = Φ
(w)
m xm + n,

where m = {s, p},
Φ

(w)
p = W M F C(w) A

and
Φ

(w)
s = W M F C(w) A G P.

Consider reconstruction problems on the sphere and plane.

BP reconstruction with Dirac sparsity basis:

minxm
‖xm‖1 such that ‖y− Φ

(w)
m xm‖2 ≤ ε

TV reconstruction:
minxm

‖xm‖TV such that ‖y− Φ
(w)
m xm‖2 ≤ ε
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Reconstruction of simulated Gaussian maps

Quantify performance on simulations of Gaussians of various sizes:
σS = {0.01, 0.02, 0.04, 0.10}.

Consider θFOV = 90◦ and Nside = 32
⇒ LFOV ' 90; Ns ' 1740; BFOV ' 20; Np ' 3360.

Beam FWHM = 45◦.

Chirp wd = {0, 1/
√

2} (corresponding to continuous w ' {0, BFOV}).

(a) Dirac sparsity for σS = 0.10 (b) TV sparsity for σS = 0.10

Figure: Sparsities on the sphere (red) and plane for various projection operators (other colours).
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Reconstruction of simulated Gaussian maps

Quantify performance on simulations of Gaussians of various sizes:
σS = {0.01, 0.02, 0.04, 0.10}.

Consider θFOV = 90◦ and Nside = 32
⇒ LFOV ' 90; Ns ' 1740; BFOV ' 20; Np ' 3360.

Beam FWHM = 45◦.

Chirp wd = {0, 1/
√

2} (corresponding to continuous w ' {0, BFOV}).

(a) Spherical image (b) SNRs for BP (c) SNRs for TV

Figure: Reconstruction performance for σS = 0.04 (blue – plane; red – sphere; solid – no chirp; dashed – with chirp).
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Reconstruction of simulated Gaussian maps

Quantify performance on simulations of Gaussians of various sizes:
σS = {0.01, 0.02, 0.04, 0.10}.
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Figure: Reconstruction performance for σS = 0.10 (blue – plane; red – sphere; solid – no chirp; dashed – with chirp).
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Reconstruction of Galactic dust map

Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and
microwave emission of diffuse interstellar Galactic dust [1]
(available form LAMBDA website: http://lambda.gsfc.nasa.gov).

Downsample to resolution of Nside = 128 and consider region of θFOV = 90◦ centered on
Galactic coordinates (l, b) = (210◦,−20◦).

Reconstruct from simulated visibilities with 25% coverage.

(a) Mollweide projection of full-sky (b) Orthographic projection of FOV

Figure: FDS map of predicted emission of diffuse interstellar Galactic dust.

http://lambda.gsfc.nasa.gov
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Figure: BP reconstruction with no chirp.

http://lambda.gsfc.nasa.gov
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microwave emission of diffuse interstellar Galactic dust [1]
(available form LAMBDA website: http://lambda.gsfc.nasa.gov).

Downsample to resolution of Nside = 128 and consider region of θFOV = 90◦ centered on
Galactic coordinates (l, b) = (210◦,−20◦).

Reconstruct from simulated visibilities with 25% coverage.

(a) Ground truth (b) Plane (SNRs = 5.3dB) (c) Sphere (SNRs = 5.0dB)

Figure: BP reconstruction with chirp.

http://lambda.gsfc.nasa.gov
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Reconstruction of Galactic dust map

Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and
microwave emission of diffuse interstellar Galactic dust [1]
(available form LAMBDA website: http://lambda.gsfc.nasa.gov).

Downsample to resolution of Nside = 128 and consider region of θFOV = 90◦ centered on
Galactic coordinates (l, b) = (210◦,−20◦).

Reconstruct from simulated visibilities with 25% coverage.

(a) Ground truth (b) Plane (SNRs = 7.4dB) (c) Sphere (SNRs = 6.7dB)

Figure: TV reconstruction with no chirp.

http://lambda.gsfc.nasa.gov
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Reconstruction of Galactic dust map

Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and
microwave emission of diffuse interstellar Galactic dust [1]
(available form LAMBDA website: http://lambda.gsfc.nasa.gov).

Downsample to resolution of Nside = 128 and consider region of θFOV = 90◦ centered on
Galactic coordinates (l, b) = (210◦,−20◦).

Reconstruct from simulated visibilities with 25% coverage.

(a) Ground truth (b) Plane (SNRs = 13.7dB) (c) Sphere (SNRs = 19.3dB)

Figure: TV reconstruction with chirp.

http://lambda.gsfc.nasa.gov


Radio interferometry Extension to WFOV Gaussian simulations Galactic dust Summary

Summary & future work

Considered inverse interferometric problem in wide FOV setting, with no small field of view
assumptions.

Chirp modulation more effective due to higher frequency content.

Signal on the sphere more sparse.

Coherence on the sphere hampered but mitigated by universality of chirp.

Quantified performance on Gaussian simulations and illustrated recovery of diffuse interstellar
Galactic dust → superiority of sphere.

Future work:

Alternative sparsity bases on the sphere
(e.g. Haar wavelets [4], steerable scale discretised wavelets [5], wavelets on graphs [3])
→ consider analysis problem.

Solve inverse problem directly on sphere
(use fast wavelet method of JDM and Scaife [4] to compute visibilities).
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