Radio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	Summary.

Compressed sensing for radio interferometric imaging on wide fields of view

Jason McEwen

http://lts2www.epfl.ch/~mcewen/

BASP research node

Institute of Electrical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

CALIM 2010 :: Dwingeloo, Netherlands

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary 00
Outline				

Radio interferometry

Wide fields of view

- Spread spectrum
- Band-limited signals
- Projection operators
- Inverse problem

Gaussian simulations

Galactic dust

Radio interferometry ●	Extension to WFOV	Gaussian simulations	Galactic dust	Summary 00
Radio interferom	etry			

• The complex visibility measured by an interferometer is given by the coordinate free definition

$$\mathcal{V}(\boldsymbol{b}_{\boldsymbol{\lambda}}) = \int_{\mathbf{S}^2} A(\boldsymbol{\sigma}) I(\boldsymbol{\sigma}) \mathrm{e}^{-\mathrm{i}2\pi \boldsymbol{b}_{\boldsymbol{\lambda}} \cdot \boldsymbol{\sigma}} \,\mathrm{d}\Omega \;.$$

• Expressed in the usual local coordinate system

$$y(u, w) = \int_{D^2} A(l) x_p(l) e^{-i2\pi [u \cdot l + w \cdot (n(l) - 1)]} \frac{d^2 l}{n(l)}$$
$$= \int_{D^2} A(l) x_p(l) C^{(w)}(||l||) e^{-i2\pi u \cdot l} \frac{d^2 l}{n(l)},$$

where I = (l, m), $||I||^2 + n^2(I) = 1$ and the chirp $C^{(w)}(||I||)$ is given by $C^{(w)}(||I||) \equiv e^{i2\pi w \left(1 - \sqrt{1 - ||I||^2}\right)}.$

• Typically small field-of-view (FOV) assumptions are made with $d\Omega = d^2 l/n(l) \simeq d^2 l$ and

•
$$||l||^2 w \ll 1 \Rightarrow C^{(w)}(||l||) \simeq 1$$

• $||l||^4 w \ll 1 \Rightarrow C^{(w)}(||l||) \simeq e^{i\pi w ||l||^2}$ (Wiaux *et al.* 2009 [6])

Radio interferometry ●	Extension to WFOV	Gaussian simulations	Galactic dust 00000	Summary 00
Radio interferom	etry			

• The complex visibility measured by an interferometer is given by the coordinate free definition

$$\mathcal{V}(\boldsymbol{b}_{\boldsymbol{\lambda}}) = \int_{\mathbf{S}^2} A(\boldsymbol{\sigma}) I(\boldsymbol{\sigma}) \mathrm{e}^{-\mathrm{i}2\pi \boldsymbol{b}_{\boldsymbol{\lambda}} \cdot \boldsymbol{\sigma}} \,\mathrm{d}\Omega \;.$$

• Expressed in the usual local coordinate system

$$y(u, w) = \int_{D^2} A(l) x_p(l) e^{-i2\pi [u \cdot l + w (n(l) - 1)]} \frac{d^2 l}{n(l)}$$
$$= \int_{D^2} A(l) x_p(l) C^{(w)}(||l||) e^{-i2\pi u \cdot l} \frac{d^2 l}{n(l)},$$

where I = (l, m), $||I||^2 + n^2(I) = 1$ and the chirp $C^{(w)}(||I||)$ is given by $C^{(w)}(||I||) \equiv e^{i2\pi w \left(1 - \sqrt{1 - ||I||^2}\right)}.$

• Typically small field-of-view (FOV) assumptions are made with $d\Omega = d^2 l/n(l) \simeq d^2 l$ and

•
$$||l||^2 w \ll 1 \Rightarrow C^{(w)}(||l||) \simeq 1$$

• $||l||^4 w \ll 1 \Rightarrow C^{(w)}(||l||) \simeq e^{i\pi w ||l||^2}$ (Wiaux *et al.* 2009 [6])

Radio interferometry ●	Extension to WFOV	Gaussian simulations	Galactic dust 00000	Summary 00
Radio interferom	etry			

• The complex visibility measured by an interferometer is given by the coordinate free definition

$$\mathcal{V}(\boldsymbol{b}_{\boldsymbol{\lambda}}) = \int_{\mathbf{S}^2} A(\boldsymbol{\sigma}) I(\boldsymbol{\sigma}) \mathrm{e}^{-\mathrm{i}2\pi \boldsymbol{b}_{\boldsymbol{\lambda}} \cdot \boldsymbol{\sigma}} \,\mathrm{d}\Omega \;.$$

• Expressed in the usual local coordinate system

$$y(\boldsymbol{u}, w) = \int_{D^2} A(\boldsymbol{l}) x_{p}(\boldsymbol{l}) e^{-i2\pi [\boldsymbol{u}\cdot\boldsymbol{l}+w(n(\boldsymbol{l})-1)]} \frac{d^2\boldsymbol{l}}{n(\boldsymbol{l})}$$
$$= \int_{D^2} A(\boldsymbol{l}) x_{p}(\boldsymbol{l}) C^{(w)}(||\boldsymbol{l}||) e^{-i2\pi \boldsymbol{u}\cdot\boldsymbol{l}} \frac{d^2\boldsymbol{l}}{n(\boldsymbol{l})},$$

where I = (l, m), $||I||^2 + n^2(I) = 1$ and the chirp $C^{(w)}(||I||)$ is given by $C^{(w)}(||I||) \equiv e^{i2\pi w \left(1 - \sqrt{1 - ||I||^2}\right)}.$

• Typically small field-of-view (FOV) assumptions are made with $d\Omega = d^2 l/n(l) \simeq d^2 l$ and

•
$$||l||^2 w \ll 1 \Rightarrow C^{(w)}(||l||) \simeq 1$$

• $||l||^4 w \ll 1 \Rightarrow C^{(w)}(||l||) \simeq e^{i\pi w ||l||^2}$ (Wiaux *et al.* 2009 [6])

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary 00
Spread spectrum	n phenomenon			

- Modulation by the chirp spreads the spectrum of the signal.
- Recall that for Fourier measurements the compressed sensing (CS) coherence is the maximum modulus of the Fourier transform on the sparsity basis vectors: μ = max_{i,j} |f_i · ψ_j|.
- Consequently, spreading the spectrum increases the incoherence between the sensing and sparsity bases, thus improving the performance of CS reconstructions.

● When no small-field assumption is made the chirp modulation contains higher frequency content ⇒ improved effectiveness of chirp on wide FOV.

Radio interferometry O	Extension to WFOV ●○○○	Gaussian simulations	Galactic dust	Summary 00
Spread spectrum phenomenon				

- Modulation by the chirp spreads the spectrum of the signal.
- Recall that for Fourier measurements the compressed sensing (CS) coherence is the maximum modulus of the Fourier transform on the sparsity basis vectors: μ = max_{i,j} |f_i · ψ_j|.
- Consequently, spreading the spectrum increases the incoherence between the sensing and sparsity bases, thus improving the performance of CS reconstructions.

Figure: Real part and imaginary part of chirp modulation for FOV $\theta_{FOV} = 90^{\circ}$.

● When no small-field assumption is made the chirp modulation contains higher frequency content ⇒ improved effectiveness of chirp on wide FOV.

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary 00
Band-limited sigr	nals			

- Consider signal on the sphere and project onto tangent plane defined by usual I = (l, m) coordinates.
- Ensure a band-limited signal on the sphere is sufficiently sampled on plane when projected.
- Band-limit relations between the sphere and plane:
 - Small FOV: $L \simeq 2\pi B$
 - Wide FOV: $L_{\rm FOV} \simeq 2\pi \cos(\theta_{\rm FOV}/2)B_{\rm FOV}$

- Band-limit relations define sampling resolutions.
- Adopt HEALPix pixelisation of the sphere [2].
- For wide FOV N_p/N_s increases rapidly
 ⇒ signal less sparse on plane;
 ⇒ superiority of sphere.

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary 00
Band-limited signals				

- Consider signal on the sphere and project onto tangent plane defined by usual l = (l, m) coordinates.
- Ensure a band-limited signal on the sphere is sufficiently sampled on plane when projected.
- Band-limit relations between the sphere and plane:
 - Small FOV: $L \simeq 2\pi B$
 - Wide FOV: $L_{\rm FOV} \simeq 2\pi \cos(\theta_{\rm FOV}/2) B_{\rm FOV}$

- Band-limit relations define sampling resolutions.
- Adopt HEALPix pixelisation of the sphere [2].
- For wide FOV N_p/N_s increases rapidly ⇒ signal less sparse on plane; ⇒ superiority of sphere.

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary 00
Band-limited signals				

- Consider signal on the sphere and project onto tangent plane defined by usual I = (l, m) coordinates.
- Ensure a band-limited signal on the sphere is sufficiently sampled on plane when projected.
- Band-limit relations between the sphere and plane:
 - Small FOV: $L \simeq 2\pi B$
 - Wide FOV: $L_{\text{FOV}} \simeq 2\pi \cos(\theta_{\text{FOV}}/2)B_{\text{FOV}}$

- Band-limit relations define sampling resolutions.
- Adopt HEALPix pixelisation of the sphere [2].
- For wide FOV N_p/N_s increases rapidly ⇒ signal less sparse on plane; ⇒ superiority of sphere.

Figure: Ratio of number of samples on the plane to the sphere (N_p/N_s) . Plotted for $L = cN_{side}$, with c = 3 (blue); $c = \sqrt{3} \pi/2$ (black); c = 2 (red).

Radio interferometry O	Extension to WFOV ○●○○	Gaussian simulations	Galactic dust	Summary 00
Band-limited signals				

- Consider signal on the sphere and project onto tangent plane defined by usual I = (l, m) coordinates.
- Ensure a band-limited signal on the sphere is sufficiently sampled on plane when projected.
- Band-limit relations between the sphere and plane:
 - Small FOV: $L \simeq 2\pi B$
 - Wide FOV: $L_{\text{FOV}} \simeq 2\pi \cos(\theta_{\text{FOV}}/2)B_{\text{FOV}}$

- Band-limit relations define sampling resolutions.
- Adopt HEALPix pixelisation of the sphere [2].
- For wide FOV N_p/N_s increases rapidly \Rightarrow signal less sparse on plane; \Rightarrow superiority of sphere.

Figure: Ratio of number of samples on the plane to the sphere (N_p/N_s) . Plotted for $L = cN_{side}$, with c = 3 (blue); $c = \sqrt{3} \pi/2$ (black); c = 2 (red).

Radio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	Summary
	0000			
Projection ope	rators			

Project onto a regular grid on the plane to reduce significantly the computational load
of subsequent analyses through the use of FFTs.

 Regridding operation is required → convolutional gridding (cf. regridding performed when mapping the visibilities observed at continuous coordinates to a regular grid, also to afford the use of FFTs).

- Consider box, Gaussian and sinc kernels.
- Select Gaussian kernel due to space-frequency trade-off (other kernels could also be considered, *e.g.* Gaussian-sinc, spheriodal functions).
- Incoherence reduced on sphere due to projection P:

$$\mu_{\rm s} = \max_{i,j} |\boldsymbol{f}_i \cdot \mathsf{P} \psi_j|,$$

 \Rightarrow hampers CS reconstruction performance;

 \Rightarrow employ universality of chirp.

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary 00
Projection operat	tors			

- Project onto a regular grid on the plane to reduce significantly the computational load of subsequent analyses through the use of FFTs.
- Regridding operation is required → convolutional gridding (cf. regridding performed when mapping the visibilities observed at continuous coordinates to a regular grid, also to afford the use of FFTs).
- Consider box, Gaussian and sinc kernels.
- Select Gaussian kernel due to space-frequency trade-off (other kernels could also be considered, *e.g.* Gaussian-sinc, spheriodal functions).
- Incoherence reduced on sphere due to projection P:

$$\mu_{\rm s} = \max_{i,j} |\boldsymbol{f}_i \cdot \mathsf{P} \psi_j|,$$

 \Rightarrow hampers CS reconstruction performance;

 \Rightarrow employ universality of chirp.

Figure: Projection of a sampled signal from the sphere to the plane.

(日)

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary 00
Projection operat	tors			

- Project onto a regular grid on the plane to reduce significantly the computational load of subsequent analyses through the use of FFTs.
- Regridding operation is required → convolutional gridding (cf. regridding performed when mapping the visibilities observed at continuous coordinates to a regular grid, also to afford the use of FFTs).
- Consider box, Gaussian and sinc kernels.
- Select Gaussian kernel due to space-frequency trade-off (other kernels could also be considered, *e.g.* Gaussian-sinc, spheriodal functions).
- Incoherence reduced on sphere due to projection P:

$$\mu_{\rm s} = \max_{i,j} |f_i \cdot \mathsf{P}\psi_j|,$$

 \Rightarrow hampers CS reconstruction performance;

 \Rightarrow employ universality of chirp.

Figure: Projection of a sampled signal from the sphere to the plane.

(日)

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary 00
Projection operation	tors			

- Project onto a regular grid on the plane to reduce significantly the computational load of subsequent analyses through the use of FFTs.
- Regridding operation is required → convolutional gridding (cf. regridding performed when mapping the visibilities observed at continuous coordinates to a regular grid, also to afford the use of FFTs).
- Consider box, Gaussian and sinc kernels.
- Select Gaussian kernel due to space-frequency trade-off (other kernels could also be considered, *e.g.* Gaussian-sinc, spheriodal functions).
- Incoherence reduced on sphere due to projection P:

$$\mu_{\rm s} = \max_{i,j} |\boldsymbol{f}_i \cdot \mathsf{P}\psi_j|,$$

- \Rightarrow hampers CS reconstruction performance;
- \Rightarrow employ universality of chirp.

Figure: Projection of a sampled signal from the sphere to the plane.

Radio interferometry O	Extension to WFOV ○○○●	Gaussian simulations	Galactic dust	Summary 00
Interferometri	c inverse problem			

• Ill-posed interferometric inverse problem:

$$\mathbf{y}=\Phi_m^{(w)}\mathbf{x}_m+\mathbf{n},$$
 where $m=\{\mathrm{s},\mathrm{p}\},$
$$\Phi_\mathrm{p}^{(w)}=\mathrm{W}\,\mathrm{M}\,\mathrm{F}\,\mathrm{C}^{(w)}\,\mathrm{A}$$
 and
$$\Phi_\mathrm{s}^{(w)}=\mathrm{W}\,\mathrm{M}\,\mathrm{F}\,\mathrm{C}^{(w)}\,\mathrm{A}\,\mathrm{G}\,\mathrm{P}.$$

• Consider reconstruction problems on the sphere and plane.

• BP reconstruction with Dirac sparsity basis:

$$\min_{\boldsymbol{x}_m} \|\boldsymbol{x}_m\|_1$$
 such that $\|\boldsymbol{y} - \Phi_m^{(w)} \boldsymbol{x}_m\|_2 \leq \epsilon$

• TV reconstruction:

 $\min_{m{x}_m} \|m{x}_m\|_{ ext{TV}}$ such that $\|m{y} - \Phi_m^{(w)}m{x}_m\|_2 \leq \epsilon$

Radio interferometry O	Extension to WFOV ○○○●	Gaussian simulations	Galactic dust	Summary 00
Interferometri	c inverse problem			

• Ill-posed interferometric inverse problem:

$$\mathbf{y} = \Phi_m^{(w)} \mathbf{x}_m + \mathbf{n},$$
 where $m = \{s, p\},$
$$\Phi_p^{(w)} = \mathsf{W} \,\mathsf{M} \,\mathsf{F} \,\mathsf{C}^{(w)} \,\mathsf{A}$$
 and
$$\Phi_s^{(w)} = \mathsf{W} \,\mathsf{M} \,\mathsf{F} \,\mathsf{C}^{(w)} \,\mathsf{A} \,\mathsf{G} \,\mathsf{P}.$$

- Consider reconstruction problems on the sphere and plane.
 - BP reconstruction with Dirac sparsity basis:

$$\min_{\boldsymbol{x}_m} \|\boldsymbol{x}_m\|_1 \text{ such that } \|\boldsymbol{y} - \Phi_m^{(w)} \boldsymbol{x}_m\|_2 \leq \epsilon$$

• TV reconstruction:

$$\min_{m{x}_m} \|m{x}_m\|_{ ext{TV}}$$
 such that $\|m{y} - \Phi_m^{(w)}m{x}_m\|_2 \leq \epsilon$

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary 00
Reconstruction o	f simulated Gaus	sian maps		

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_{s} = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90; N_{\text{s}} \simeq 1740; B_{\text{FOV}} \simeq 20; N_{\text{p}} \simeq 3360.$
- Beam FWHM = 45° .
- Chirp w_d = {0, 1/√2} (corresponding to continuous w ≃ {0, B_{FOV}}).

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_{\rm S} = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90; N_{\text{s}} \simeq 1740; B_{\text{FOV}} \simeq 20; N_{\text{p}} \simeq 3360.$
- Beam FWHM = 45° .

Chirp w_d = {0, 1/√2} (corresponding to continuous w ≃ {0, B_{FOV}}).

Figure: Sparsities on the sphere (red) and plane for various projection operators (other colours).

Radio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	Summary
		0000000		
Reconstruction	on of simulated G	aussian maps		

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_{\rm S} = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90; N_{\text{s}} \simeq 1740; B_{\text{FOV}} \simeq 20; N_{\text{p}} \simeq 3360.$
- Beam FWHM = 45° .
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_{\rm S} = 0.01$ (blue – plane; red – sphere; solid – no chirp; dashed – with chirp).

Radio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	Summary
		00000000		
Reconstructio	on of simulated G	aussian maps		

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_{\rm S} = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90; N_{\text{s}} \simeq 1740; B_{\text{FOV}} \simeq 20; N_{\text{p}} \simeq 3360.$
- Beam FWHM = 45° .
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_{\rm S} = 0.02$ (blue – plane; red – sphere; solid – no chirp; dashed – with chirp).

Radio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	Summary
		00000000		
Reconstruction	on of simulated G	aussian maps		

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_{\rm S} = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90; N_{\text{s}} \simeq 1740; B_{\text{FOV}} \simeq 20; N_{\text{p}} \simeq 3360.$
- Beam FWHM = 45° .
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_8 = 0.04$ (blue - plane; red - sphere; solid - no chirp; dashed - with chirp).

Radio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	Summary
		00000000		
Reconstruction	on of simulated G	aussian maps		

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_{\rm S} = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90; N_{\text{s}} \simeq 1740; B_{\text{FOV}} \simeq 20; N_{\text{p}} \simeq 3360.$
- Beam FWHM = 45° .
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_8 = 0.10$ (blue - plane; red - sphere; solid - no chirp; dashed - with chirp).

Radio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	Summary
		000000000		
Reconstructio	n of simulated G	aussian maps		

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_{s} = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90; N_{\text{s}} \simeq 1740; B_{\text{FOV}} \simeq 20; N_{\text{p}} \simeq 3360.$
- Beam FWHM = 45° .
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_{\rm S} = 0.01$ (blue – plane; red – sphere; solid – no chirp; dashed – with chirp).

Radio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	Summary
		000000000		
Reconstruction	n of simulated Ga	aussian maps		

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_{s} = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90; N_{\text{s}} \simeq 1740; B_{\text{FOV}} \simeq 20; N_{\text{p}} \simeq 3360.$
- Beam FWHM = 45° .
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_{\rm S} = 0.02$ (blue – plane; red – sphere; solid – no chirp; dashed – with chirp).

Radio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	
		000000000		
Reconstruction	on of simulated G	aussian maps		

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_{s} = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90; N_{\text{s}} \simeq 1740; B_{\text{FOV}} \simeq 20; N_{\text{p}} \simeq 3360.$
- Beam FWHM = 45° .
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_{\rm S} = 0.04$ (blue – plane; red – sphere; solid – no chirp; dashed – with chirp).

Radio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	
		00000000		
Reconstructio	on of simulated G	aussian maps		

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_{s} = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90; N_{\text{s}} \simeq 1740; B_{\text{FOV}} \simeq 20; N_{\text{p}} \simeq 3360.$
- Beam FWHM = 45° .
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_{\rm S} = 0.10$ (blue – plane; red – sphere; solid – no chirp; dashed – with chirp).

Reconstruction of Calactic duct man					
0			00000		
Radio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	Summary	

- Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and microwave emission of diffuse interstellar Galactic dust [1] (available form LAMBDA website: http://lambda.gsfc.nasa.gov).
- Downsample to resolution of $N_{\text{side}} = 128$ and consider region of $\theta_{\text{FOV}} = 90^{\circ}$ centered on Galactic coordinates $(l, b) = (210^{\circ}, -20^{\circ})$.
- Reconstruct from simulated visibilities with 25% coverage.

Decement	a of Oplantia due	1		
			00000	
Radio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	Summary

- Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and microwave emission of diffuse interstellar Galactic dust [1] (available form LAMBDA website: http://lambda.gsfc.nasa.gov).
- Downsample to resolution of $N_{\text{side}} = 128$ and consider region of $\theta_{\text{FOV}} = 90^{\circ}$ centered on Galactic coordinates $(l, b) = (210^{\circ}, -20^{\circ})$.
- Reconstruct from simulated visibilities with 25% coverage.

Figure: BP reconstruction with no chirp.

adio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust ○○●○○	Summar 00

- Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and microwave emission of diffuse interstellar Galactic dust [1] (available form LAMBDA website: http://lambda.gsfc.nasa.gov).
- Downsample to resolution of $N_{\text{side}} = 128$ and consider region of $\theta_{\text{FOV}} = 90^{\circ}$ centered on Galactic coordinates $(l, b) = (210^{\circ}, -20^{\circ})$.
- Reconstruct from simulated visibilities with 25% coverage.

Figure: BP reconstruction with chirp.

		1		
			00000	
adio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	

- Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and microwave emission of diffuse interstellar Galactic dust [1] (available form LAMBDA website: http://lambda.gsfc.nasa.gov).
- Downsample to resolution of $N_{\text{side}} = 128$ and consider region of $\theta_{\text{FOV}} = 90^{\circ}$ centered on Galactic coordinates $(l, b) = (210^{\circ}, -20^{\circ})$.
- Reconstruct from simulated visibilities with 25% coverage.

Figure: TV reconstruction with no chirp.

			00000	
adio interferometry	Extension to WFOV	Gaussian simulations	Galactic dust	Summa

- Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and microwave emission of diffuse interstellar Galactic dust [1] (available form LAMBDA website: http://lambda.gsfc.nasa.gov).
- Downsample to resolution of $N_{\text{side}} = 128$ and consider region of $\theta_{\text{FOV}} = 90^{\circ}$ centered on Galactic coordinates $(l, b) = (210^{\circ}, -20^{\circ})$.
- Reconstruct from simulated visibilities with 25% coverage.

A D > A P > A D > A D >

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary ●O
Summary & futu	re work			

 Considered inverse interferometric problem in wide FOV setting, with no small field of view assumptions.

- Chirp modulation more effective due to higher frequency content.
- Signal on the sphere more sparse.
- Coherence on the sphere hampered but mitigated by universality of chirp.
- Quantified performance on Gaussian simulations and illustrated recovery of diffuse interstellar Galactic dust → superiority of sphere.
- Future work:
 - Alternative sparsity bases on the sphere

 (e.g. Haar wavelets [4], steerable scale discretised wavelets [5], wavelets on graphs [3])
 → consider analysis problem.
 - Solve inverse problem directly on sphere (use fast wavelet method of JDM and Scaife [4] to compute visibilities).

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary •O
Summary & futur	e work			

- Considered inverse interferometric problem in wide FOV setting, with no small field of view assumptions.
- Chirp modulation more effective due to higher frequency content.
- Signal on the sphere more sparse.
- Coherence on the sphere hampered but mitigated by universality of chirp.
- Quantified performance on Gaussian simulations and illustrated recovery of diffuse interstellar Galactic dust → superiority of sphere.
- Future work:
 - Alternative sparsity bases on the sphere

 (e.g. Haar wavelets [4], steerable scale discretised wavelets [5], wavelets on graphs [3])
 → consider analysis problem.
 - Solve inverse problem directly on sphere (use fast wavelet method of JDM and Scaife [4] to compute visibilities).

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary •O
Summary & futur	e work			

- Considered inverse interferometric problem in wide FOV setting, with no small field of view assumptions.
- Chirp modulation more effective due to higher frequency content.
- Signal on the sphere more sparse.
- Coherence on the sphere hampered but mitigated by universality of chirp.
- Quantified performance on Gaussian simulations and illustrated recovery of diffuse interstellar Galactic dust → superiority of sphere.
- Future work:
 - Alternative sparsity bases on the sphere

 (e.g. Haar wavelets [4], steerable scale discretised wavelets [5], wavelets on graphs [3])
 → consider analysis problem.
 - Solve inverse problem directly on sphere (use fast wavelet method of JDM and Scaife [4] to compute visibilities).

Radio interferometry O	Extension to WFOV	Gaussian simulations	Galactic dust	Summary O●
References				

D. P. Finkbeiner, M. Davis, and D. J. Schlegel. Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS. *Astrophys. J.*, 524:867–886, October 1999. K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann. Healbix – a framework for high resolution discretization and fast analysis of data distributed on the sphere.

Healpix – a framework for high resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J., 622:759–771, 2005.

- [3] D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via spectral graph theory. *Applied Comput. Harm. Anal.*, in press, 2010.
- [4] J. D. McEwen and A. M. M. Scaife. Simulating full-sky interferometric observations. *Mon. Not. Roy. Astron. Soc.*, 389(3):1163–1178, 2008.
- [5] Y. Wiaux, J. D. McEwen, P. Vandergheynst, and O. Blanc. Exact reconstruction with directional wavelets on the sphere. *Mon. Not. Roy. Astron. Soc.*, 388(2):770–788, 2008.
- [6] Y. Wiaux, G. Puy, Y. Boursier, and P. Vandergheynst. Spread spectrum for imaging techniques in radio interferometry. *Mon. Not. Roy. Astron. Soc.*, 400:1029–1038, 2009.

