## AST(ZON

## Full Polarization Calibration of Phased Array Systems

Stefan J. Wijnholds<br>e-mail: wijnholds@astron.nl

SKA Calibration \& Imaging Workshop Dwingeloo (The Netherlands), 24 August 2010

## Outline

## AST(2ON

- The physics of phased arrays
- Phased array feeds
- The optimal case
- Practical methods
- Conditions for polarimetric fidelity
- Aperture arrays
- From bi-scalar to full polarization calibration
- LOFAR example
- Conditions for polarimetric fidelity
- Conclusions


## Propagation of EM waves

Born \& Wolf, Principles of Optics, 1980
Spatial correlation between $\mathrm{q}_{1}$ and $\mathrm{q}_{2}$ due to

1. common origin $p_{1}$
2. common origin $\mathrm{p}_{2}$
3. coherence between field $q_{1}$ from $p_{1}$ and $q_{2}$ from $p_{2}$
4. coherence between field $q_{1}$ from $p_{2}$ and $q_{2}$ from $p_{1}$





## The origin of spatial coherency

 Born \& Wolf, Principles of Optics, 1980
## AST(2ON

Spatial coherency in aperture plane

- Signal from common origin
- Mechanisms 1 and 2



Spatial coherency in focal plane

- Spat. coh. in aperture plane
- Imperfect focus
- Mechanisms 3 and 4



## Spatial coherency in the focal plane Cornwell \& Napier, Radio Science, 1988 <br> AST(2ON

Physical relevance of spatial coherency

- Out of focus


- Aberrations
- Diffraction
- Imperfect reflector
- atmo-/tropo-/ionosphere

- ...


Image: Cornwell \& Napier

## Generic model of a phased array

Ivashina, Maaskant \& Woestenburg, IEEE AWPL, 2008 Ivashina et al., IEEE TrAP, 2010, accepted

## AST(2ON

$$
\bar{E}(\mathbf{r}, t)=E_{u}(\mathbf{r}, t) \hat{u}+E_{v}(\mathbf{r}, t) \hat{v}
$$

$\mathbf{E}(\mathbf{r}, t) \quad$ incident field
$E_{u}, E_{v} u$ - and $v$-component
v output voltage vector


Callm, Dwingeloo (The Netherlands), 24 August 2010

## Optimal polarimetric calibration (1) <br> Warnick, Jeffs, Ivashina, Maaskant \& Wijnholds, Phased Array Workshop, April 2010

$\mathbf{v}_{u}, \mathbf{v}_{v} \quad$ voltage response to pure $u$ - or $v$-polarized signal
Assume: $\mathbf{V}=\left[\mathbf{v}_{u}, \mathbf{v}_{\mathrm{v}}\right]$ is known
BF output covariance matrix: $\mathbf{W}^{H}\left(\mathbf{R}_{s}+\mathbf{R}_{\mathrm{n}}\right) \mathbf{W}$
where $\quad \mathbf{W}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}\right]$
$\mathbf{R}_{\mathrm{s}}$ is the signal covariance matrix
$\mathbf{R}_{\mathrm{n}}$ is the noise covariance matrix
We want to: 1. minimize the noise: $\operatorname{argmin}_{w} \mathbf{W}^{H} R_{n} \mathbf{W}$
2. preserve polarization: $\mathbf{W}^{H} \mathbf{V}=\mathbf{I}$

## Optimal polarimetric calibration (2)

Warnick, Jeffs, Ivashina, Maaskant \& Wijnholds, Phased Array Workshop, April 2010

## Steps to solution

- Reformulate using Lagrange multipliers
- Take derivatives and set them to zero
- Use contraint to find Lagrange multipliers


## Solution

$$
\mathbf{W}=\mathbf{R}_{n}^{-1} \mathbf{V}\left(\mathbf{V}^{H} \mathbf{R}_{n}^{-1} \mathbf{V}\right)^{-1}
$$

## Interpretation

- Maximum sensitivity beam former
- Correction for optimal polarimetric fidelity


## Practice (1): subspace method Veidt, Phased Array Workshop, April 2010

## Problem: unknown $\mathbf{v}_{u}$ and $\mathbf{v}_{v}$

Calibration on an unpolarized source:

- on source measurement: $\mathbf{R}_{\text {on }}=\mathbf{R}_{\mathrm{s}}+\mathbf{R}_{\mathrm{n}}$
- Off source measurement: $\mathbf{R}_{\text {off }}=\mathbf{R}_{n}$
- $\mathbf{R}_{\mathrm{s}}=\mathbf{R}_{\text {on }}-\mathbf{R}_{\text {off }}$
- Find dominant eigenvectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$
- $\mathbf{W}=\mathbf{R}_{\mathrm{n}}{ }^{-1}\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$


## Practice (2): interpreting eigenvectors Wijnholds, Ivashina, Maaskant, Warnick \& Jeffs, TrAP, in prep. AST(RON

Eigenvectors are orthogonal, $\mathbf{v}_{u}$ and $\mathbf{v}_{v}$ need not be
$\rightarrow$ generally no one-to-one correspondence

## Internal check

- Dominant eigenvalues: $\lambda_{1,2}=\sigma(1 \pm \varphi)$
- $\varphi=\mathbf{v}_{u}{ }^{H} \mathbf{v}_{v} /\left\|\mathbf{v}_{u}\right\|\left\|\mathbf{v}_{v}\right\|$
- Difference eigenvalues gives degree of orthogonality

Comparison with optimal method on poster Ivashina et al.

## Practice (3): polarimetric requirement Wijnholds, Ivashina, Maaskant, Warnick \& Jeffs, TrAP, in prep. AST(RON

$\mathbf{v}_{u}$ and $\mathbf{v}_{v}$ span the same subspace as $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$
$\rightarrow\left[\mathbf{v}_{\mathrm{u}}, \mathbf{v}_{\mathrm{v}}\right]=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right] \mathbf{T}$
$\rightarrow \mathbf{R}_{\mathrm{s}}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right] \wedge\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]^{\mathrm{H}}=\mathbf{V} \mathbf{T}^{-1} \boldsymbol{\Lambda} \mathbf{T}^{-\mathrm{H}} \mathbf{V}^{\mathrm{H}}=\mathbf{V} \mathbf{T}^{\prime} \mathbf{T}^{\mathrm{H}} \mathbf{V}^{\mathrm{H}}$
$\rightarrow \mathbf{V} \mathbf{T}^{\prime} \mathbf{T}^{\boldsymbol{H}} \mathbf{V}^{H}=\mathbf{V} \mathbf{T} \mathbf{U} \mathbf{U}^{H} \mathbf{T}^{\boldsymbol{H}} \mathbf{V}^{H}$
$\rightarrow \mathbf{T}^{\prime}$ (and $\mathbf{T}$ ) only known to a unitary matrix $\mathbf{U}$
Physical significance:

- polrotation: rotation [Q, U, V]-vector in [Q, U, V]-space
- polconversion: conversion from I to [Q, U, V]

We need two distinctly polarized calibrators!

## Practice (4): bi-scalar calibration

- Max-SNR BF for $u$ - and $v$-array (separately)
- Pros
- Allows full calibration on unpolarized source
- Clear physical meaning of BF outputs
- No unitary ambiguity at feed level
- Cons
- Unitary ambiguity not solved but postponed
- Needs identical polarimetric element response


## Calibration of aperture arrays (1)

Optimal method is single source method $\rightarrow$ problem: it does not work for aperture arrays!

Reason: multiple source in FoV ( $2 \pi \mathrm{sr}$ )

Problem formulation:

$$
\boldsymbol{\theta}=\operatorname{argmin}_{\boldsymbol{\theta}}\left\|\mathbf{R}_{\text {obs }}-\mathrm{R}_{\text {model }}(\boldsymbol{\theta})\right\|_{F}^{2}
$$

where the parameter vector $\boldsymbol{\theta}$ includes, a.o.,

- electronic element gains (direction independent)
- apparent source Stokes vectors (direction dependent)


## Calibration of aperture arrays (2) <br> Wijnholds, Ph.D. thesis, TU Delft, 2010 <br> AST(ZON

Weighted alternating least squares (WALS):

1. initialize sky model using prior knowledge
2. estimate direction independent element gains

Wijnholds \& Van der Veen, TrSP, Sept. 2009
3. estimate apparent source Stokes vectors (DDEs)

Wijnholds, Ph.D. thesis, TU Delft, 2010
4. estimate noise covariance matrix

Wijnholds \& Van der Veen, EuSiPCo, Aug. 2009
5. repeat $2-4$ until convergence

## Bi-scalar vs. full pol. calibration

## AST(2ON

Comparison of results with LBA-outer CS001 data June 7, 2010, 14:00h freq.: 45.3 MHz BW: 195 kHz integration: 1 s blue: x-elements magenta: y-elements circles: bi-scalar crosses: full-pol

## Observed Stokes vectors

DDEs included in apparent source Stokes vectors
$\rightarrow \mathbf{E}_{\text {app }}=\mathbf{J}_{1} \mathbf{E}_{0} \mathbf{J}_{2}{ }^{\mathrm{H}}$
$\rightarrow$ most sources are unpolarized, so $\mathbf{E}_{0}=\mathbf{I}$
$\rightarrow \mathbf{E}_{\text {app }}=\mathbf{J}_{1} \mathbf{J}_{2}{ }^{\mathrm{H}}=\mathbf{J}_{1} \mathbf{U} \mathbf{U}^{\mathrm{H}} \mathbf{J}_{2}{ }^{\mathrm{H}}$
$\rightarrow$ Polrotation and polconversion strike again!

Unitary ambiguity in each probed direction (source)

## Understanding its implications

## Scalar analog

- $2 \pi$ phase ambiguity
- can be resolved by phase screen if enough sources
- leaves (irrelevant) common phase ambiguity

wrong phase screen solution
wrong phase screen solution
proper phase screen solution
wrong phase screen solution


## Resolving the unitary ambiguities

fit polarimetric model of DDEs

- atmo-/tropo-/ionospheric distortions
- beam patterns
- etc.
reduction to common ambiguity if enough sources
problem: common unitary matrix is physically significant
$\rightarrow$ it should be determined
$\rightarrow$ we need two distinctly polarized sources per
FoV per snapshot!


## Conclusions

## AST(2ON

## Phased array feeds

- optimal method provides bench mark
- practical methods: eigenvector and bi-scalar
- see poster MVI et al. for comparison
- calibration on unpol. sources gives unitary ambiguity $\rightarrow$ two measurements on distinctly polarized sources


## Aperture arrays

- full polarization multi-source method
- needs sufficient sources within FoV for interpolation
- needs two polarized sources within FoV in snapshot

