Recent Advances in Sky/Source Model Construction

Sarod Yatawatta

Kapteyn Institute, University of Groningen

and

ASTRON

Outline

□ Wake you up.

- \Box Talk about the following topics in random order:
 - Image fidelity
 - Dynamic range
 - Source modeling
 - Sky models
 - Deconvolution
- \Box Stop talking.

Motivation: Sky models are essential for self-calibration. Accurate sky models need accurate source models. Cutting down computational cost requires efficient incorporation of sky models to the measurement equation.

Note: Unless otherwise stated, all astronomical images were produced with real LOFAR data

AST(RON

Landau-Pollak Theorem

 \Box Occam's razor: *Entities should not be multiplied unnecessarily*.

- \Box All physical signals are both time and band limited [Slepian, 1976].
- \Box Finite support in image and uv plane due to noise.
- □ Cramer-Rao Lower Bound on pixelization [Yatawatta, 2010].
- \Box Simplest form [Landau and Pollak, 1962],

 $N_{\rm degrees \ of \ freedom} < A_{\rm image} \times A_{\rm uv}$

 \Box Also related to Shannon number.

Example: CasA

 $uv\ {\rm coverage}\ {\rm for}\ {\rm two}\ {\rm different}\ {\rm observations}\ {\rm of}\ {\rm CasA}$

Example

CasA 115-170 MHz [Brentjens, Yatawatta, in prep.]

Fidelity-Dynamic Range Tradeoff

Dynamic Range

3C61.1

Resolution 45 arcsec, 150 MHz, o: diameter 9 deg

3C196

Peak 72 Jy, Noise 4 mJy, 150 MHz, Dynamic range \approx 18000

3C196 (First Multibeam)

Multibeam (5 beams), 170 MHz, FOV 14×14 degrees

Sky Model Construction

Example with two sources

Model construction

Given: set of image pixels z_i with fluxes and positions

$$z_i = \sum_{j=1}^K s_j(\boldsymbol{\theta}_j) + n_i$$

Find θ_j to minimize

$$\sum_{i} ||z_i - \sum_{j=1}^{K} s_j(\boldsymbol{\theta}_j)||^2$$

Use Expectation Maximization (EM) [Feder and Weinstein, 1988] to solve this. (Sanaz Kazemi will talk more about EM tomorrow).

Use Akaike's information [Akaike, 1973] to find the right K.

Sky Model

Sky model

Hierarchical Clustering

Cut down the cost of computing direction dependent terms

$$\mathbf{V}_{pq} = \sum_{i} \mathbf{J}_{ip} \mathbf{K}_{ipq} \mathbf{C}_{i} \mathbf{J}_{iq}^{H} \Leftrightarrow \sum_{i} \mathbf{J}_{ip} \left(\sum_{j \in S_{i}} \mathbf{K}_{jpq} \mathbf{C}_{j} \right) \mathbf{J}_{iq}^{H}$$

Deconvolution

groningen AST (RON

Deconvolution

Original (left), PSF (middle), Deconvolved (right)

L1 Regularization

 $\min ||Ax - b||_2^2 \qquad \min ||Ax - b||_2^2 + \lambda ||x||_1$ [Kim et al., 2007] Truncated Newton Interior Point Method

EVLA Cygnus A

(with Tony Willis and Rick Perley) Observation at 8.5 GHz, baselines 34 m to 1 km

8x2 MHz channels, Peak 34 Jy, Noise I 2.5 mJy Q,U 1 mJy, V 2 mJy

EVLA Cygnus A: Limitations

VLA image, o: EVLA PSF. Hotspots partially resolved.

Stokes Q

Stokes U Peak polarized flux \approx 2 Jy. Need full polarization calibration.

Cygnus A Residual

