EoR Simulation and testing pipeline

Compute instrumental co

Post-processing: Inversion

Signal Extraction

Step I: Sky realizations

Step 2: Predict Visibilities (Part I)

Step 3: Self-cal

Step 4: Inversion (Part II)

Step 5: Extraction and interpretation
(Courtesy of V. Jelic)

COSMIC MICROWAVE BACKGROUND

DARK Ages

EPOCH OF

REIONIZATION

EXTRAGALACTIC
FOREGROUNDS
GALACTIC FOREGROUNDS

IONOSPHERE

THE LOFAR TELESCOPE

BLUEGENE STELLA

End To End Pipeline: Prediction

Simulation

Specifications

Coordinates of the 3C196 field	
centre (J2000.0)	$\alpha=8^{\mathrm{h}} 13^{\mathrm{m}} 36^{3} .0, \delta=48^{\circ} 13^{\prime} 03^{\prime \prime}$
Galactic coordinates	$l \simeq 171^{\circ}, b \simeq 33^{\circ}$
Number of spectral bands	128
Frequency coverage (MHz)	$120-184$
Width of each band (MHz)	1
Frequency resolution (MHz)	0.5
Time resolution (sec)	30
FoV	$\sim 10 \mathrm{deg}$
Noise at $150 \mathrm{MHz}(\mathrm{mK})$	840 mK
Obs. duration (hrs)	4

Point sources:

- 3C 196 ($75 \mathrm{Jy} @ 138 \mathrm{MHz}$)Field
- RA: 08 : I3 : 16.05, DEC: +48: 13 : 02.58
- (+ A team)
- Point-sources extracted with duchamp
- Random spectral indices

(Bernardi et al.)
- Tail of the point-source brightness distribution from Jelic et al.

End To End Pipeline: Prediction

Read Simulations Create Empty MSs

Diffuse galactic foregrounds as GRF with normalization taken from Jelic et al.

200 Mpc 21 -cm signal cubes from R.Thomas

End To End Pipeline: Prediction

lonosphere

- Superposition of TIDs and Kolmogorov turbulence (cascading)
- Large scale TID behavior from Spoelstra and Velthoven

$$
\phi_{\mathrm{ij}}=2 \mathrm{~A} \sin \left(\mathrm{k}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right) / 2\right) \sin \left[\omega \mathrm{t}-\mathrm{k}\left(\mathrm{x}_{\mathrm{i}}+\mathrm{x}_{\mathrm{j}}\right) / 2\right]
$$

Phase 2-Structure function

Position Error

End To End Pipeline: Prediction

Beam shapes

Sarod Yatawatta, "LOFAR beamshapes and their use in calibration and imaging",ASTRON Tech. Report, 2007
Polarized response due to dipole projection - Narrowband beamformer

$$
\left[\begin{array}{cc}
\mathbf{E}_{\theta, p}(\gamma, \beta) \mathbf{E}_{\theta, q}^{*}(\gamma, \beta) & \mathbf{E}_{\theta, p}(\gamma, \beta) \mathbf{E}_{\theta, q}^{*}(\gamma, \beta-\pi / 2) \\
+\mathbf{E}_{\phi, p}(\gamma, \beta) \mathbf{E}_{\phi, q}(\gamma, \beta) & +\mathbf{E}_{\phi, p}(\gamma, \beta) \mathbf{E}_{\phi, q}(\gamma, \beta-\pi / 2) \\
\mathbf{E}_{\theta, p}(\gamma, \beta-\pi / 2) \mathbf{E}_{\theta, q}^{*}(\gamma, \beta) & \mathbf{E}_{\theta, p}(\gamma, \beta-\pi / 2) \mathbf{E}_{\theta, q}^{*}(\gamma, \beta-\pi / 2) \\
+\mathbf{E}_{\phi, p}(\gamma, \beta-\pi / 2) \mathbf{E}_{\phi, q}(\gamma, \beta) & +\mathbf{E}_{\phi, p}(\gamma, \beta-\pi / 2) \mathbf{E}_{\phi, q}^{\star}(\gamma, \beta-\pi / 2)
\end{array}\right]
$$

Instrumental polarization

see also Bhatnagar, Carozzi

Beam polarization distortion
Initially non-polarized sources

Stokes I [Jy]

Stokes U [Jy]

Stokes Q [Jy]

Stokes V [Jy]

End To End Pipeline: Prediction

End To End Pipeline: Prediction

Gain modeling

- Auto Regressive Moving Average are used to describe stationary time series
- Can be generated by passing white noise through a recursive (AR) and non recursive (MA) filter.
- ARMA is appropriate when a system is a function of a series of unobserved shocks (the MA part, ie temperature fluctuations) as well as its own behavior (i.e. clock jitter).

$$
X_{t}=c+\sum_{i=1}^{p} \varphi_{i} X_{t-i}+\varepsilon_{t} . \quad X_{t}=\varepsilon_{t}+\sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}
$$

$$
X_{t}=c+\varepsilon_{t}+\sum_{i=1}^{p} \varphi_{i} X_{t-i}+\sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i} .
$$

- Likelihood

$$
L\left(\mu, \phi, \sigma_{w}^{2}\right)=\left(2 \pi \sigma_{w}^{2}\right)^{-n / 2} \sqrt{1-\phi^{2}} \exp \left[-\frac{S(\mu, \phi)}{2 \sigma_{w}^{2}}\right],
$$

where

$$
S(\mu, \phi)=\left(1-\phi^{2}\right)\left(x_{1}-\mu\right)^{2}+\sum_{t=2}^{n}\left[\left(x_{t}-\mu\right)-\phi\left(x_{t-1}-\mu\right)\right]^{2} .
$$

- (un)conditional least squares
- State space methods
- Brure force - use observed cov. Instead of theoretical

$$
\left[\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{cccc}
\gamma_{0} & \gamma_{-1} & \gamma_{-2} & \ldots \\
\gamma_{1} & \gamma_{0} & \gamma_{-1} & \ldots \\
\gamma_{2} & \gamma_{1} & \gamma_{0} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3} \\
\vdots
\end{array}\right]
$$

Model selection

- Aikake's final prediction error provides a measure of model quality in the situation where differenet datasets are available.

$$
\begin{aligned}
& F P E=V\left(\frac{1+d / N}{1-d / N}\right) \\
& V=\operatorname{det}\left(\frac{1}{N} \sum_{1}^{N} \varepsilon\left(t, \theta_{N}\right)\left(\varepsilon\left(t, \theta_{N}\right)\right)^{T}\right)
\end{aligned}
$$

V is the loss function: a function that maps an outcome into a real number representing the cost of that outcome. In general it depends on the difference between the true or desired value.

Frequentist: Calculate the expected value w.r.t. The PDF of the observed data

$$
V=\operatorname{det}\left(\frac{1}{N} \sum_{1}^{N} \varepsilon\left(t, \theta_{N}\right)\left(\varepsilon\left(t, \theta_{N}\right)\right)^{T}\right)
$$

Prediction: 2.5, 5, 10 and 20 minutes

End To End Pipeline: Prediction

GRN on real
and imag. part
Noise

GRN on real

and imag. part

CASA Tables

The result

Right Ascension (J2000)

Step I:Sky realizations

Step 2: Predict Visibilities

Step 3: Self-cal

Step 4: Inversion

Step 5: Extraction and interpretation

Comparison between original Jones matrix and solution

Original J11

Semblance

Original J11
0.1\% Error Level

Original J11

Things to be done

- Include RFI effects in the simulation
- Include a more complex GSM
- Effects of bandwidth smearing
- Longer baselines
- Murual-coupling

Step I:Sky realizations

Step 2: Predict Visibilities (Part I)

Step 3: Self-cal

Step 4: Inversion (Part II)

Step 5: Extraction and interpretation

The data model

$$
\mathrm{v}=\mathrm{A}(\mathrm{p}) \mathrm{s}+\mathrm{n} \quad \mathrm{~s}=\left(\begin{array}{c}
\operatorname{scsin} \\
\text { s.ssu} \\
\text { s.ssid }
\end{array}\right)
$$

- Each visibility is a linear combination of the sky components
- Selfcal solves for s through CLEANing and p through a calibration step (usually cLLS)

We can write the data model as:

$$
\begin{aligned}
\mathbf{V}_{k} & =\left(\overline{\mathbf{A}}_{k} \circ \mathbf{A}_{k}\right) \operatorname{vecdiag}(\mathbf{b}) \\
A_{+} & =\left[\begin{array}{c}
\overline{\mathbf{A}}_{1} \circ \mathbf{A}_{1} \\
\vdots \\
\overline{\mathbf{A}}_{k} \circ \mathbf{A}_{k}
\end{array}\right]
\end{aligned}
$$

The the map is given by:

$$
\mathbf{b}=\mathbf{A}_{+}^{P l} \mathbf{v}_{+}=\left(\mathbf{A}_{+, j}^{\dagger} \mathbf{A}_{+, i}\right)^{-1} \mathbf{A}_{+, j}^{\dagger} \operatorname{vec}\left(v_{k}\right)
$$

The factor $\mathbf{A}_{+, j}^{\dagger} \operatorname{vec}\left(v_{k}\right)$ corresponds to the dirty map and the matrix $\left(\mathbf{A}_{+, j}^{\dagger} \mathbf{A}_{+, i}\right)^{-1}$ is the deconvolution step.
This approach will lead to a ML solution but is computationally very expensive. CLEAN is less optimal

$$
\mathbf{b}=\left(\mathbf{A}_{+, j}^{\dagger} \mathbf{C}^{-1} \mathbf{A}_{+, i}\right)^{-1} \mathbf{A}_{+, j}^{\dagger} \mathbf{C}^{-1} \operatorname{vec}\left(v_{k}\right)
$$

Using priors (also obtained by Wiener filtering, Zaroubi et al., 1995 :

$$
\mathbf{b}=\left(\mathbf{C}_{s}^{-1}+\mathbf{A}_{+, j}^{\dagger} \mathbf{C}^{-1} \mathbf{A}_{+, i}\right)^{-1} \mathbf{A}_{+, j}^{\dagger} \mathbf{C}^{-1} \operatorname{vec}\left(v_{k}\right)
$$

Deconvolution condition number/ Regularization

- The deconvolution matrix gives an estimate of the redistribution of noise on the image plain.
- It also measures how well-posed the inverse problem is.
- For the LOFAR EoR KSP, the image plain is oversampled by a factor 2^{-4}.
- Regularization method as well as strength affect the final result.

Regularization

- Two regularization methods used: Tikhonov and local diffusion operators (Vogel \& Oman, Fatami et al., Labropoulos et al., in prep.)
- Tikhonov is fast to implement but choice of reg. parameter is difficult.
- Diffusion method needs and iterative approach.

Regularization error around map peaks

Inversion

- If A has full rank then the Gauss-Markov gives the best linear unbiased estimator given by:

$$
\left(\mathbf{A}^{\mathrm{T}} \mathbf{C}_{\mathrm{N}}^{-1} \mathbf{A}_{\mathrm{N}}+\lambda \mathbf{R}^{\mathrm{T}} \mathbf{R}\right) \mathrm{s}=\mathbf{A}^{\mathrm{T}} \mathbf{C}_{\mathrm{N}}^{-1} \mathbf{v}
$$

- Remark: In the case where $\mathrm{C}=\sigma^{2} \mathrm{I}$ then this is equivalent to deterministic weighted LS problem:

$$
\min _{\mathbf{p} \in \mathbb{R}^{n}}\|\mathbf{A} s-\mathbf{v}\|_{c_{N}^{-1}}
$$

Inversion

- The previous estimator is unsuitable for the solution of ill-conditioned systems
- In that case the best estimator is the Min. Variance estim.:

$$
\mathbf{C}_{\mathbf{v v}} \mathbf{A}^{T}\left(\mathbf{A C}_{\mathbf{v v}}^{-1} \mathbf{A}^{T}+\mathbf{C}_{N}\right)^{-1} \mathbf{s}=\left(\mathbf{A}^{T} \mathbf{C}_{N}^{-1} \mathbf{A}+\mathbf{C}_{\mathbf{v V}}^{-1}\right)^{-1} \mathbf{A}^{T} \mathbf{C}_{N}^{-1} \mathbf{s}
$$

- When the noise and th visibilities are independent this is the MAP estimator

Cramer-Rao Bound

GP-GPU Benchmarking

CULA

Conclusions:

- Simulations can help us understand interferometric observations but...
- The solutions are degenerate. The full parameter space might be explored
- Time-series analysis can model the underlying dynamics of a system
- ML imaging is optimal and feasible for EoR observations with a compact array

