ThoughtWorks[®] UCAA

Automated data processing for ugurtand Meerkar absorption The surveys

Presented By: Ravi Sharma & Dolly Gyanchandani

NORTHAMERICA

00

Atlanta Chicago Dallas New York San Francisco Toronto

EUROPE

Berlin Cologne Hamburg Istanbul London Manchester Munich

• •

LATINAMERICA

Belo Horizonte Porto Alegre Quito Recife São Paulo

0

5000+ Passionate ThoughtWorkers

Countries

Offices

ENGINEERING FOR RESEARCH (E4R)

Thirty Meter Telescope (TMT) *Indian Institute of Astrophysics (IIA)*

Automated Radio Telescope Imaging Pipeline (ARTIP)

The Inter-University Centre for Astronomy and Astrophysics

NEED FOR PIPELINE

MEERKAT ABSORPTION LINE SURVEY

Hours of Observation

NEED FOR PARALLELIZATION

4 Nodes cluster having **Gluster Filesystem**

Processing same data on a single high class machine will take several weeks

PIPELINE STAGES

Target Source Imaging

TECHNOLOGY STACK

python

ANACONDA®

Peter Williams conda packages https://github.com/pkgw/conda-recipes

FLUX CALIBRATION

- Flagging
 - Initial screening of antennas
 - Detailed analysis in time
 - Keep track of flags:
 - Extension to other sources, frequencies, etc
 - Flagging statistics to user
- Done on **single** channel on flux calibrator

PHASE DISPERSION

CIRCULAR STATISTICS: ANGULAR DISPERSION

 $R \approx 0$

R ≈ 1

0

CLOSURE PHASES

1

$O = \Phi_{12} + \Phi_{23} - \Phi_{13}$

[quack] INFO Running quack... [flux_calibration] INFO Flux Calibration [setjy] INFO Running setjy [analyse_antennas_on_angular_dispersio [analyse_antennas_on_closure_phases] [generate_report] INFO AntennaId, Pola [generate_report] INFO 1 [generate_report] INFO 1 [generate_report] INFO 1 [generate_report] INFO 1 [generate_report] INFO 18 [generate_report] INFO 18 [extend_flags] INFO Extending flags... [flagdata] INFO Flagging BAD_ANTENNA [apply_flux_calibration] INFO Applying Flux Calibration

on] INFO I	dentifyi	ng bad Ante	ennas based	on c
INFO Ident	ifying be	ad Antennas	s based on	closu
arisation,	ScanId,	R_Status,	CP_Status	
RR	1	bad	bad	
RR	7	bad	bad	
LL	1	bad	bad	
LL	7	bad	bad	
RR	1	bad	bad	
LL	1	bad	bad	

EXTENSION OF FLAGS: FLUX CALIBRATION

RESULTS OF INITIAL SCREENING

All Antennas

Bad Antennas

Antenna 18

DETAILED FLAGGING

- Good Antennas can be bad for some part of time
- Baseline combinations can be bad for some part of time

Amplitude data of a single channel

Global Median Global Mad

	А	В	С	D	Е	F	G	Н
1	Antenna Matrix							
2	Baseline	T1	T2	Т3	Т4	••••	••••	Tn
3	(0,1)	5	2	7	8			6
4	(1,3)	7	4	7	Nan			5
5	(1,4)	8	5	6	9			7

Amplitude matrix for Baseline (0,1)

	A	В	С	D	Е	F	G	Н
1	Baseline Matrix							
2	Baseline	т1	т2	тз	Т4			Tn
3	(0,1)	5	2	7	8			6

DETAILED FLAGGING: SLIDING WINDOW

Filtered Matrix : Antenna 1 F G Η B С D E A Antenna Matrix 1 Decide T1 T2 T3 T4 Baseline Tn 2 window size and 5 8 3 (0,1) 6 2 overlap count 5 (1,3)7 7 Nan 4 4 5 (1,4) 8 5 9 7 6

 Compare window median with Global Median to check deviated median • Compare window MAD with Global MAD to check scattered amplitude

Sliding window on Antenna Matrix

DETAILED FLAGGING: LOOPS

Track the flagged windows data

BANDPASS CALIBRATION

Bandpass gain tables are extended to flux and phase calibrators

Common Astronomy Software Applications

Flagging Algorithms

- 1. RFlag
- 2. TFCrop

PERCENTAGES OF FLAGGED DATA

Flagging statistics available at different stages of the pipeline: useful for reliability and quality check.

- Run flagging algorithms with averaged data over channels
- Lenient flagging thresholds because
 - completely bad antennas are removed in Flux calibration

EXTENSION OF FLAGS: PHASE CALIBRATION

If an antenna is bad between two Phase calibrator scans, it will also be bad in all the scans between them

IMAGING

In continuum self calibration masks are constructed based on two criteria :

IMAGES GENERATED BY THE PIPELINE

Data size = 10GB, Bandwidth = 4 MHz, Channels = 512; Validated quality of data products and pipeline performance for standard GMRT modes.

PIPELINE PERFORMANCE

Specs:

RAM - 256 GB

Cores - 40

Storage - 18 TB

Data volume: 8 GB

Time taken: 37 minutes

In progress

Profiling for wideband uGMRT datasets (200 MHz with 8 K channels; 100 GB): refer to Neeraj's talk Simulated 1 TB dataset

- 1. Data Storage
- 2. Computing
 - mpicasa (works on
 - mms partitioned by
 - frequencies)
 - 40 Nodes IUCAA cluster
 - 128 GB RAM
 - 16 CPU cores

DISTRIBUTED COMPUTING ON SERVER CLASS MACHINES

CONTRIBUTORS

Neeraj Gupta

Dolly Gyanchandani

Unmesh Joshi

Arti Pande

Vineet Pathak

Sarang Kulkarni

Santosh Mahale

Ravi Sharma

Gunjan Shukla

