ASTRON Strijksuniversiteit

F. Maccagni; R. Morganti; T. Oosterloo; K. Geréb; N. Maddox, J. Allison

THE LAST SURVEY OF THE 'OLD' WSRT: TOOLS AND RESULTS FOR THE FUTURE HI Absorption surveys

A SURVEY BEFORE THE 'BLIND' SURVEYS

- During my PhD, WSRT was upgraded to Apertif: over time antennae went offline
- To detect HI absorption we don't need complete uv-coverage
 - Great opportunity for HI absorption studies
 - Observe as many sources as possible before WSRT observations stop
 - 4/6 hrs observation with variable number of antennae
 - average noise in the spectra ~ 1 mJy
 - Set strategy and tools for the 'blind' surveys: SHARP, MALS, FLASH
 - What is the detection rate of HI in the local Universe?
 - What features of the HI lines relate to the properties of the radio sources?

THE LAST SURVEY OF THE OLD WESTERBORK

248 sources

- ▶ 0.02 < z < 0.25
- SDSS spectroscopy
- ► $S_{Cont} \ge 30 \text{ mJy}$
 - mostly AGN in ETG

1. 101 sources; $S_{Cont} \ge 50 \text{ mJy}$

Stacking experiment [Geréb et al., 2014]

- Analysis of the detections [Geréb , Maccagni, et al., 2015]
- 2. All 248 sources

Mid-InfraRed [22 µm] - Radio Power Relation

This Talk [Maccagni et al., 2017]

STRATEGY OF THE SURVEY

STRATEGY FOR HI ABSORPTION SURVEYS

HI ABSORPTION LINES

66 detections

- Ine features measured with the BusyFunction [Westmeier, et al. 2014]
- 30 < FWHM < 570 km/s</p>
- ▶ 70 < FW20 < 640 km/s
 - 3 main groups:
 - Narrow lines:
 - FWHM < 100 km/s
 - Medium width lines:
 - 100 km/s <FWHM < 200 < km/s
 - Broad lines:
 - FWHM > 200 km/s

CHARACTERISATION OF THE SAMPLE

- Compact sources (red):
 - unresolved by FIRST.
 - often radio-jets on sub-galactic scales.
 - many compact sources are young AGN.

- Extended sources (blue):
 - resolved by FIRST.
 - radio-jets on super-galactic scales.
 - usually older AGN than compact sources.

CHARACTERISATION OF THE SAMPLE

WISE MIR colours Dust-poor non-detection $12\mu m$ bright non-detection \bigcirc ∇ dust in the host galaxy $4.6\mu m$ bright non-detection ∇ 1.5Dust-poor detection ∇ $\langle \overline{} \rangle$ $12\mu m$ bright detection ∇ ∇ $4.6\mu m$ bright detection Interacting non-detection W1 – W2 [3.4 - 4.6 μm] Dust-poor sources (green) Interacting detection ∇ ∇ 1.0 ∇ 12 µm-bright sources ∇ (orange) 0.5**Emission from PAHs and** ∇ heated dust. 4.6 µm-bright sources 0.0 (black) 3.0 2.0 4.0 0.05.01.0 $W2 - W3 [4.6 - 12 \ \mu m]$

The central AGN heats the surrounding circumnuclear dust.

DETECTING HI ABSORPTION

- 248 sources / 66 Detections
 - 27 % ± 5.5 % detection rate
 - Constant in redshift and radio power

- Compact sources and MIR bright
 - HI often detected (~40%).
- Extended sources & dust-poor sources
 - HI is rarely detected (~13%).

KINEMATICS OF THE HI

P_{1.4GHz} < 10²⁴ W Hz⁻¹

- ▶ widths ≤ rotational velocity
- HI likely in a rotating disk.

P_{1.4GHz} > 10²⁴ W Hz⁻¹

broad asymmetric lines.

- Compact, i.e. jets within the galaxy.
- MIR bright, i.e. rich in heated dust.

KINEMATICS OF THE HI

- ▶ P_{1.4GHz} < 10²⁴ W Hz⁻¹
 - lines centred at systemic velocity
- P_{1.4GHz} > 10²⁴ W Hz⁻¹
 - lines offset w.r.t. systemic velocity
 - offset is blue-shifted.

- Broad, asymmetric, shifted absorption line
 - Unsettled kinematics
 - Powerful radio sources
 - Compact, i.e. jets within the galaxy.
 - MIR bright, i.e. rich in heated dust.

STACKING EXPERIMENT

- Non-detections are important!!!!
 - Stacking of 170 non-detections
 - NO LINE is detected at ~ 0.0015 (3σ)
 - Stacking of sub-groups of sources
 - NO LINE is detected at ~ 0.003 (3σ)
 - Not even in compact sources or MIR bright sources.

STACKING THE ATLAS^{3D} NON-DETECTIONS

- 81 ATLAS3D sources HI is not detected in the centre.
- **STACKING:** 3σ detection of HI emission
 - N(HI) ~ $3.5 \times 10^{17} (T_{spin}/c_f) \text{ cm}^{-2}$
 - N(HI) converted in optical depth (T_{spin}~100 K, c_f =1)
 - τ~ 0.0006 << 0.0015</p>
 - we need to stack more to detect this gas in absorption.

The HI stacking ATLAS^{3D} is warm?

►
$$\mathsf{T}_{\mathsf{spin}} \uparrow \Rightarrow \tau \downarrow ; \mathsf{T}_{\mathsf{spin}} \downarrow \Rightarrow \tau \uparrow$$

Stacking in absorption even more difficult

Understand the overall distribution of the HI traced by the absorption line

- What to can we infer from only the integrated line and the continuum image?
 - Model the rotating HI disk in front of the radio continuum:

• 3C 305

- Optical Image (SDSS or other): i, PA of the stellar body
- Continuum image: against which radio lobe there is absorption?
 - i ∈ [0°,180°]
 - ▶ PA ∈ [180°, 360°]

• 3C 305

- Optical Image (SDSS or other): i, PA of the stellar body
- Continuum image: against which radio lobe there is absorption?
 - i ∈ [0°,180°]
 - ▶ PA ∈ [180°, 360°]

- MCMC algorithm
 - find combination of parameters that best fits the observed line the line
 - I = 45°; PA = 270 °

- The bulk of the absorption generated by a rotating disk: i = 45°; PA = 270°
- Blue-shifted wing not reproduced by the model

- Less information on the source?
 - i ∈ [0°,180°]
 - PA ∈ [0°, 360°]

- Best-fit solution: i = 55°; PA = 240 °
- VLBI high resolution continuum
 - Likely we can improve the fit

CONCLUSIONS

27%±5.5% detection rate of HI in absorption

- HI detected at all redshifts (0.02 < z < 0.23) and radio powers:
 - promising for SHARP, MALS, FLASH
- Narrow lines
 - HI mainly in a rotating disk
 - P_{1.4GHz} < 10²⁴ W Hz⁻¹, Extended sources, dust poor sources
- Broad asymmetric shifted lines:
 - HI has unsettled kinematics
 - P_{1.4GHz>} 10²⁴ W Hz⁻¹, Compact sources (i.e. often young AGN), MIR bright sources
- Stacking experiments:
 - Iow optical depth HI is present in the centre of ETGs, warmer HI (T_{spin} >100 K)?

BLIND SURVEYS: AUTOMATIC SEARCH FOR HI ABSORPTION

