Linking absorption and emission of the CGM with IMAGINE **Attila Popping**

HI absorption 2017 ASTRON - Dwingeloo, 14-16 June 2017

THE UNIVERSITY OF Western Australia

Time since the Big Bang: 2.3 billion years

- IGM is an unexplored region
- Contains information about structure formation: e.g. tidal filaments
- cold mode), feedback processes

Connection to IGM

Extended halo forms connection between IGM and galaxies; gas accretion (hot mode,

Due to moderately high temperatures, most of the gas is ionised **How neutral fraction**

Simulated HI Gas

www.imagine-survey.org

Neutral fraction

A Deep GBT survey

- PI George Heald (Heald et al 2011)
- 10 ×12h per target, to reach $N_{HI} = 1 \times 10^{19} \text{ cm}^{-2}$ (3 σ , 16 km s⁻¹) at 30" resolution (cf. THINGS: 5x10¹⁹ cm⁻²)
- unresolved cloud mass sensitivity of **2.7x10⁵** (D/10 Mpc)² M_{\odot}
- Survey sample 24 galaxies (including NGC 891 & NGC 2403)
- Survey complete and summary papers in progress

HALOGAS

- Effort underway to collect full list of all clouds and streams in HALOGAS target fields
 - How many galaxies show signs of accretion? How much (and at what rate)? Clouds or diffuse? Co-rotating with the galaxy? Associated with star formation? ...
- Preliminary result already clear: A few features possibly attributable to cold accretion (in the form of HI) • but insufficient to fully balance SFR in a typical galaxy;

 - HALOGAS has not detected a large population of clouds with with MHI $>10^{5}$ Mo
 - not associated with SF (down to 10¹⁹ cm-2)
 - HALOGAS has not found significant amounts of low-column density HI • NGC 891 is an extreme, atypical case

HALOGAS accretion catalogue

Accretion seemingly not predominantly in the form of clouds (down to current observational limits).

- Era of galaxy SFR decline?

Implication

Hopkins & Beacom 2006

Accretion seemingly not predominantly in the form of clouds (down to current observational limits).

- Era of galaxy SFR decline?

Implication

- In the form of hot gas, and brought to the disk via fountain?

Accretion seemingly not predominantly in the form of clouds (down to current observational limits).

- Era of galaxy SFR decline?
- In the form of hot gas, and brought to the dis
- Happening at lower column densities?

 10^{15}

10¹⁶

Implication

Observed Properties of the CGM: The HI Gas

COS: Cosmic Origins Spectrograph

Tumlinson et al

J1555+3628_88_11 J1514+3619_287_14 J1419+4207_132_30 J1342-0053_157_10 J1330+2813_289_28 J1322+4645_349_11 J1241+5721_199_6 J1233+4758_94_38 J1157-0022_230_7 J1133+0327_164_21 J1133+0327_110_5 J1112+3539_236_14 J1016+4706_359_16 J1016+4706_274_6 J1009+0713_204_17 J1009+0713_170_9 J0950+4831_177_27 J0943+0531_227_19 J0943+0531_106_34 J0910+1014_34_46 J0910+1014_242_34

COS QSO absorption line work at low z

Prochaska et al. 2017

www.imagine-survey.org

INAGINE

Imaging Galaxies' Intergalactic and Nearby Environment

ATCA legacy project C3157 Imaging Galaxies Intergalactic and Nearby Environment

PI: Attila Popping (ICRAR / UWA)

- Observe 28 spiral Galaxies and their direct environment
- Use 8 most compact configurations of ATCA (12 hours each)
- Total time 2688 hours
- NHI~2.5x10¹⁷ cm⁻² over 20 km s⁻¹.
- resolution 1' to 2.5'

www.imagine-survey.org

vironment (12 hours each)

- Measure the extended gas content of galaxies to detect gas accretion and outflows. \bullet
- Determine the environment of gas accretion
- Detect the densest peak of the underlying Cosmic Web.
- Continuum source variability at low flux levels over the full survey area.
- Studies of warps and lopsidedness in spiral galaxies.
- Intervening HI absorption against background sources
- Studies of angular momentum.
- Lower column densities by stacking sight-lines in the halos of galaxies. •
- Linear polarisation
- Circular polarisation
- OH mega-masers
- SKA-SDP testing
- •

IMAGINE Science

Craig Anderson Erwin de Blok Thanapol Chanapote Richard Dodson Jonah Gannon George Heald Jane Kaczmarek Dane Kleiner Baerbel Koribalski Karen Lee-Waddell Angel Lopez-Sanchez Juan Madrid Martin Meyer Vanessa Moss Danail Obreschkow

IMAGINE team

DJ Pisano Attila Popping Chris Power Jonghwan Rhee Aaron Robotham Amy Sardone Lee Spitler Lister Staveley-Smith Kevin Vinsen Jing Wang Tobias Westmeier Andreas Wicenec Christian Wolf Chen Wu

NGC0024 NGC0045 NGC0625 ESO154-023 NGC1433 NGC1512 NGC1515 NGC1617 NGC1744 NGC1792 NGC2188 ESO209-009 NGC2835 NGC2997 NGC3109 NGC3137 NGC3175 ESO214-017 NGC3511 ESO270-017 ESO274-001 ESO138-010 NGC6300 IC5052 NGC7090 IC5201 NGC7424 NGC7793

IMAGINE sample

- Spirals
- Distance < 15 Mpc
- Declination < -20 degrees
- Optical diameter 5' $< D_{25} < 20'$
- Inclination 35 80 or 90 degrees
- HIPASS bounding box < 45 arcmin

IMAGINE sample

- Proposal submitted June 2016
- Proposal accepted Sep 2016
- Observations started in Oct 2016 (~450 hrs)
- ~300 hours scheduled in current semester
- complementary Parkes observations this semester (PI: DJ Pisano)
- Observations to be completed within two years
- Automated processing pipeline using MIRIAD
- Object detection and parameterisation with SoFiA

Status update

www.imagine-survey.org/timeline

Early results: NGC7993

NGC2997: extra planar gas

ATCA: 750B

white contours: $NHI = 1e18 - 1e19 \text{ cm}^{-2}$

Attila Popping

Early results: IC5052

ATCA: h168 + h214

Right Ascension (J2000)

white contours: $NHI = 1e17 - 1e18 \text{ cm}^{-2}$

$N_{HI} \sim 10^{19} \text{ cm}^{-2}$

$N_{HI} \sim 10^{18} \text{ cm}^{-2}$

Right Ascension (J2000)

Nuza et al. 2014

Are we getting closer ...??

www.imagine-survey.org

Sensitivity comparison

www.imagine-survey.org

- * Understanding gas accretion is one of the fundamentals of Galaxy evolution
- * To see gas accretion in HI column densities of $N_{HI} \sim 10^{18}$ cm⁻² are required
- * Such observations begin to link direct emission with absorption measurements
- * New telescopes (SKA, FAST, etc) will really change this field
- * We started the IMAGINE survey on ATCA which will set a benchmark for coming years

Conclusion

