Young radio sources:

Truthful or liar objects?

Daniele Dallacasa^{1,2}, Monica Orienti² Noemi Nino¹, Filippo D'Ammando²

1 Department of Physics and Astronomy, University of Bologna

2 Institute of Radioastronomy (National Institute of Astrophysics), Bologna

Young radio sources:

Truthful or liar objects? (aka the Good, the Bad and the Ugly)

Daniele Dallacasa^{1,2}, Monica Orienti² Noemi Nino¹, Filippo D'Ammando²

1 Department of Physics and Astronomy, University of Bologna

2 Institute of Radioastronomy (National Institute of Astrophysics), Bologna

Continuity HFP/GPS/CSS/FR - * sources Most objects are at high z, a few nearby youngsters in local LLAGNs)

No (low) polarization (ambient medium) (e.g. Cotton+, 2003)

Lobe (jet) dominated emission (what are lobes and jets is very small/young objects if compared to CSS/GPS; imply a high core dominance?)

Still building up their luminosity (e.g. Snellen +, 2000) ⇒ Relativistic plasma being accumulated into lobes, injection more efficient than losses (radiative/expansion)

Do we expect some variability (discontinuous/irregular relativistic plasma production)? More similar to a derivative rather than to an integral of activity

Mostly based on

Orienti, Dallacasa & Stanghellini (2010), Orienti & Dallacasa (2012), (2008), Dallacasa & Orienti (2016)

The Good news, *i.e. principles*

(Easy !) Selection on spectral shape,
 Peaks at several GHz highest v_p, the
 youngest the object

- Small young as small (young) as possible
- Smoking gun of the mechanism turning on the radio emission

Expectations:

 Δ LS/LS larger than in GPS and CSS objects, (relatively fast) "evolution" foreseen

The Bad news...

i.e. Is nature against principles ?

A small fraction of r-s population
 (10³ yr old, ~10⁻⁴ of 10⁷ yrs old objects)

- Selection of truly young objects may be inefficient
 Possible contamination form other populations
- Is the evolutionary paradigm HFP GPS CSS MPS FR I-II correct? (FR-non 0 are a small fraction.....)
- Luminosity can help (mess?), however this is only part of the story

How to study them?

- > Small, i.e. Small number of resolution elements across the source, i.e.
- > Difficult comparison with larger sources (can self-similarity be applied on pc scale?).

Statistical studies of very young radio sources via samples:

Bright HFP sample (we heard something from Monica) Faint HFP sample about 60 objects ($\sim 50 + \sim 10$) [Sample(s) of objects sharing the spectral shape at least once in their life]

Here a summary of

- » spectral shape & variability,
- > pc-scale properties
- and a prototypical case

Spectral shape, width & variability

Spectral shape, width & variability

Spectral shape, width & variability

Pc-scale (thin) emission

Pc-scale (thin) emission

Unresolved (6) Marginally Resolved (5) Resolved (6)

Need a few years to Measure kinematic age.

Radiative age unlikely to be measured.

Helpful in finding truly young sources (morphology)

Radio data from Edge, 1996

Radio data from Edge, 1996 ; 1999

Radio data from Edge, 1996 ; 1999, 2003

Radio data from Edge, 1996 ; 1999, 2003, 2012

it is classified as largely variable

Barely resolved (0.36x0.14 mas) at the highest observing frequency

Age $\sim 70 \text{ yr}$

IF single homogeneous component, $H \sim 0.16$ G, i.e. @ GHz frequencies, $\gamma \sim 10^2$.

If use the v_p – LS relation, the expansion speed is too large.

The radio luminosity substantially decreased (would quickly fade away)

It does not follow the conventional simplified picture/evolution model

The Ugly news (did we learn something?)

 Even "genuinely young objects" cannot be described by a simple evolution model.

- Assumptions are far too simplistic (homogeneous component in terms of relativistic electrons & H field) (homogeneous ambient medium)
- Large space parameters (environment plays a fundamental role), difficult to explore
- Little information from other bands (ID, z, It is difficult to convince other communities to invest time in studying young radio sources.....)

The evolution of the *very young* radio source is generally fast Variability does not necessarily mean bad/ugly source

~ 10pc.... mas scale resolution is required. Spectral shape: observe optically thin emission. Interaction of plasma with what?

Are many young radio sources short lived objects?

(amount of cold gas to fuel for the AGN, stability of radio jet, etc.) Do they end most as MSOs (MPS, Joe) / transient RLAGNs (Alexandra) /Faders (AM,MKB)? Which is the failure rate? (must be high) Are they recurrent on their own?

Small total energy budget, large losses (high H fields, high radiation fields, adiabatic expansion), need an efficient & long lived mechanism for giving FR-*