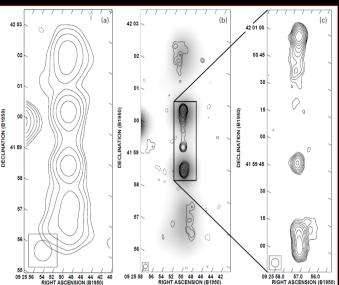
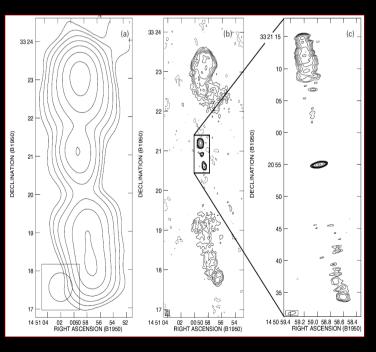
Radio and optical properties of extragalactic radio sources with recurrent jet activity

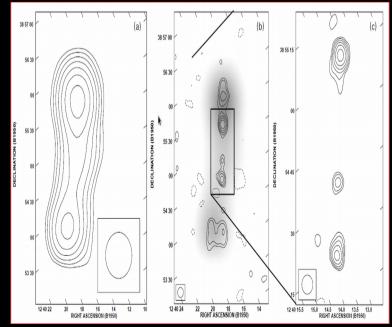
Marek Jamrozy

Obserwatorium Astronomiczne Uniwersytetu Jagiellońskiego

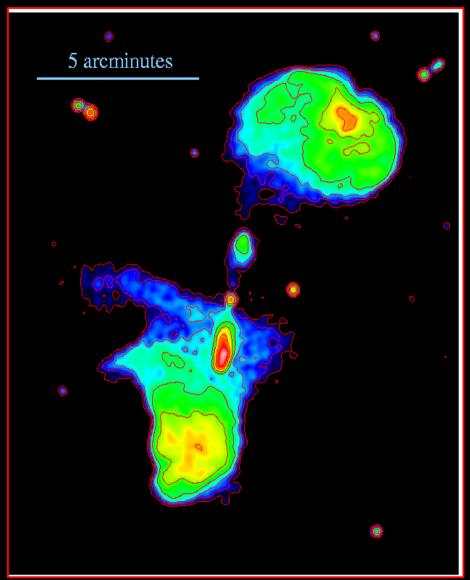
Energetics and life-cycles of radio sources


ASTRON, 26-28 March 2018


B0925+420


A. P. Schoenmakers,
A. G. de Bruyn,
H. J. A. Rottgering,
H. van der Laan,
C. R. Kaiser
2000, MNRAS, 315, 371

WENSS 326 MHz Rengelink et al. 1997, A&AS, 124, 259



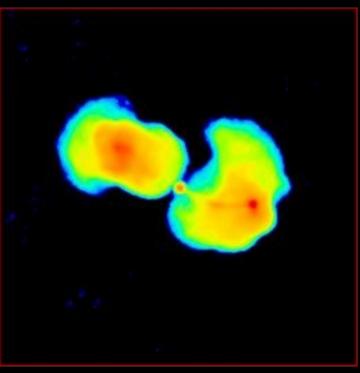
DDRG – two unequall sized , two sided, double lobed, edge-brightened (FRII) radio sources from two different cycles of activity.

B1240+389

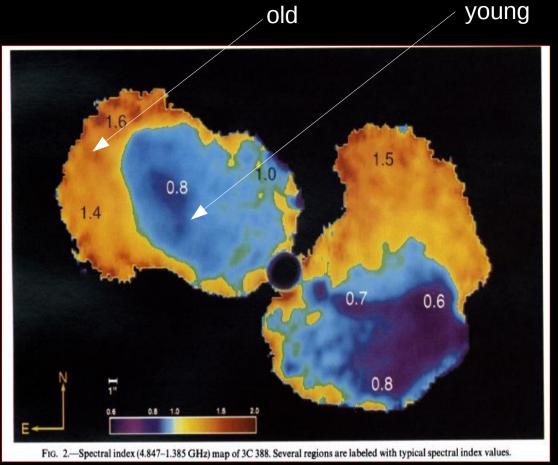
B1450+333

Saripalli, Subrahmanyan, Udaya Shankar, 2003, ApJ, 590, 181

to recognise


Morphological characteristics of restarters

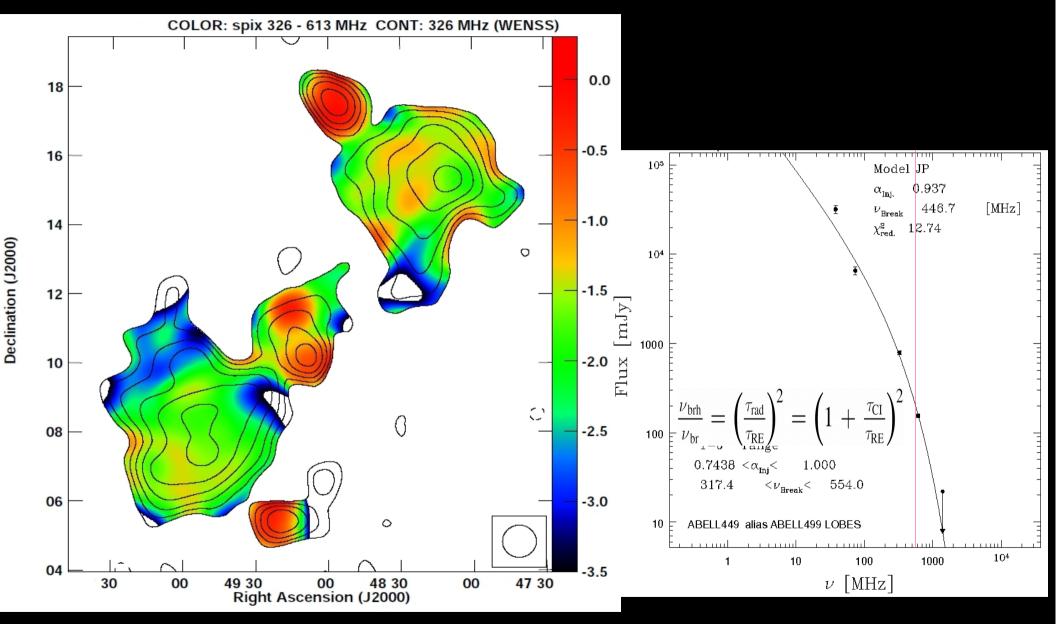
- No hotspots in outer lobes
- Large axial-ratio of inner lobes
- Inverse spectrum or variable core


Interruptions related to:

- \rightarrow refueling of the central engine
- $\rightarrow\,$ instabilities in the accretion disk
- \rightarrow jet production machanism

Difficult to recognize

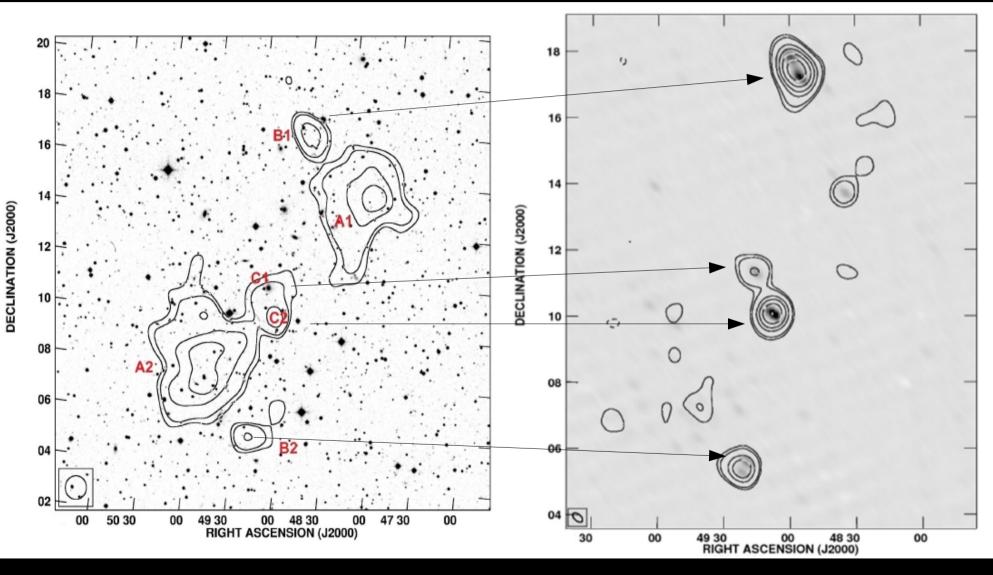
3C388 z=0.0917 size=1'



Roettiger, Burns, Clarke, & Christiansen, 1994, ApJ, 421, L23 Relic radio emission in 3C388

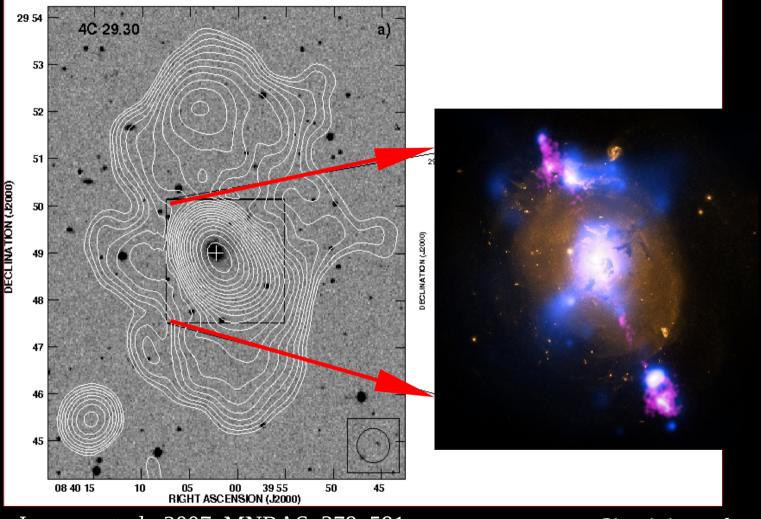
Abstract

New VLA images of the radio galaxy **3C 388 have revealed an intriguing distribution** of spectral indices which is **quite different from that of typical classical double sources**. We observe two distinct regions of emission separated by a well-defined transition layer delineated by a dramatic jump in the spectral index, particularly in the eastern lobe. We interpret these data as **evidence of at least two distinct epochs of jet activity** in which the current jets have resumed penetration of the IGM and are inflating younger, more energetic lobes into the relic lobes of the previous epoch. To the best of our knowledge, 3C 388 is the **first radio galaxy in which multiple epochs of activity** are clearly visible in the large-scale radio structure.


J0349+7511 (Abell 449)z = 0.08ultra-steep spectrum 1.3 Mpc giant

Hunik & Jamrozy, 2016, ApJL, 817, 1

mean synchrotron age of the lobes' particles is about **160±20Myr** (v_{br} =450 ±120 MHz) **J0349+7511**


Ghost at high radio frequencies

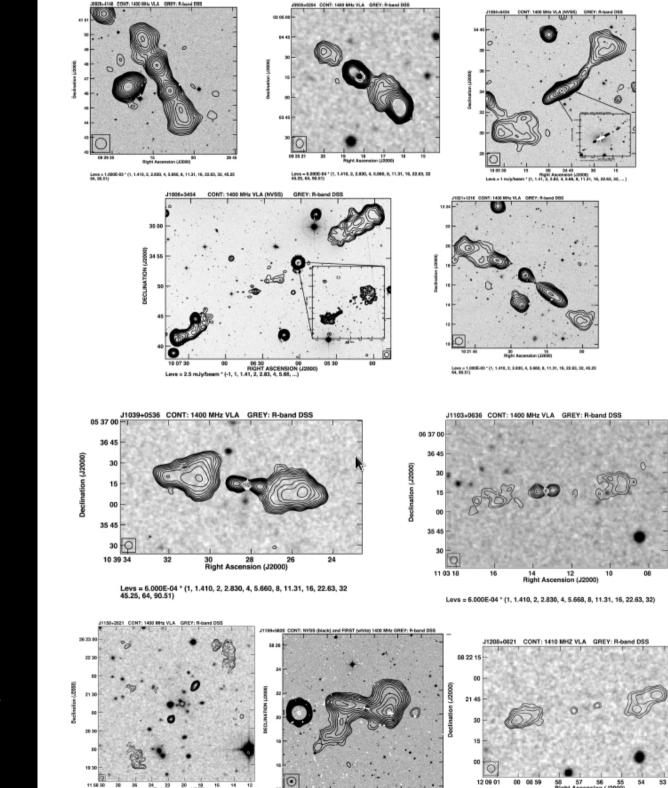
WENSS

NVSS

Weak cocoons

4C 29.30

Jamrozy et al., 2007, MNRAS, 378, 581

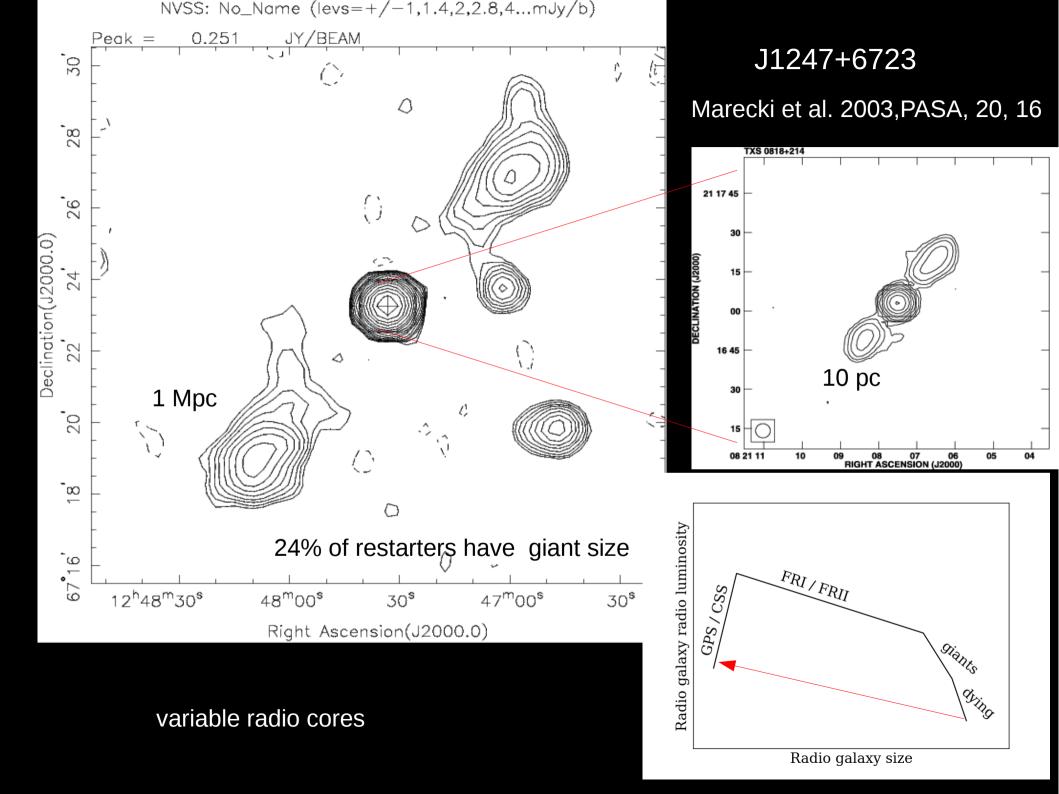

Siemiginowska, et al. 2012, ApJ, 750, 124

Radio sources with recurrent jet activity

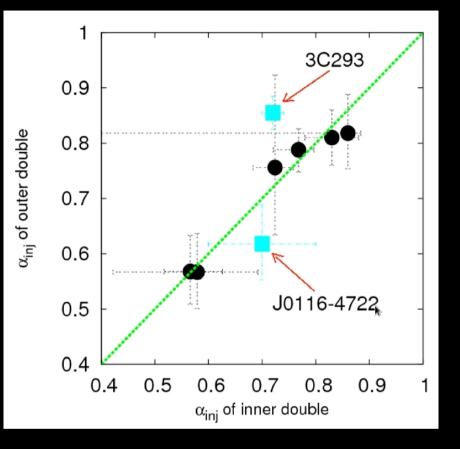
- 74 sources
- 67 galaxies, 2 quasars
- 0.002 < z < 0.7
- 0.02 < D < 4284 kpc

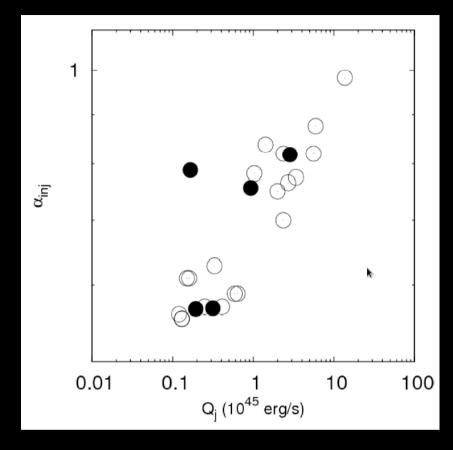
Kuzmicz et al., 2017, MNRAS, 471, 3806 Table 1. Radio sources with evidence of recurrent activity.

Source	IAU	RAJ2000.0	Dec.J2000.0	Opt.	Red-	lin	lin	lout	lout	Sin	Sout	logM _{BH}	Class	Ref.
(name)	(name		(°′″)	(Id.)	(shift)	(kpc)	(arcsec)	(kpc)	(arcsec)	(mJy)	(mJy)	(M _O)	(A/B)	(Cmt.)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
J0009+1	244 4C12.0	3 00 09 52.60	+12 44 04.64	G	0.156	114.9	43	553.1	207	100	907	_	A	1,f
J0037+1	319 3C16	00 37 44.57	+13 19 55.00	G	0.405	96.91	18	419.9	78	35	1765	_	A	1,2
J0041+3	224*	00 41 46.12	+32 24 52.65	G	(0.45)	172	30	974	170	525	409	_	A	3
J0042-0	613	00 42 46.85	-06 13 52.92	G	0.123	518.1	237.1	753.6	344.9	690	1140	9.23	A	4,a,e
J0104-6	609	01 04 21.26	-66 09 17.30	G	(1.19)	66.7	8	750	90	0.37	5.22	_	A	5
J0111+3	906* B0108+3	388 01 11 37.32	+39 06 28.10	G	0.6685	0.07	0.01	126.1	18	519	8	_	B?	6,b,c
J0116-4		01 16 25.04	-47 22 41.60	G	0.146	455	180	1441	570	260	2640	-	A	7
J0301+3	512* 4C 34.0	9 03 01 42.37	+35 12 20.68	G	0.0165	0.66	2	233.7	706	1800	119	8.26	B	2,i
J0301+3		6 03 01 51.50	+35 50 30.00	G	0.0463	32.29	36	403.7	450	492	258	-	A	8
J0303+1			+16 26 19.06	G	0.0325	21.8	34.1	107.1	167.4	450.2	2602	-	В	1
J0351-2			-27 44 34.70	G	0.0662	251.8	200.8	437.8	349.1	2636	3009	-	A	9
J0504+3			+38 06 11.40	G	-	_	115.6	-	166.1	1485	7862	-	A	a
J0709-3			-36 01 21.80	G	0.218	627.1	179.4	1720	492	480	1444	-	A	10,11
J0741+3			+31 12 00.22	Q	0.632	0.03	0.005	478.5	70	2188	38	9.37	A	12,b,h
J0746+4		07 46 17.92	+45 26 34.46	G	0.5502	95	15.2	640	100.1	24.2	191.6	9.96	A	13
J0804+5		08 04 42.79	+58 09 34.94	S	0 419	27	21.6	200.9	106.3	58.6	192.1	-	A	13
J0821+2			+21 17 02.87	G	0.418 0.0647	2.7 39.3	0.5	209.8 533.3	38.24	148 446.7	46.4 216.9	8.32	AB	14 15
J0840+2 J0847+3			+29 49 02.63 +31 47 08.37	G	0.0647	203	32 159.3	362.1	434.6 284.2	446.7	1303	8.32 9.28	A	15
J0847+3 J0855+4		08 55 49.15	+31 4/ 08.3/ +42 04 20.11	G	(0.279)	35.3	8.4	545.9	284.2	173.9	155.7	9.28	A	16
J0855+4 J0910+0		09 10 59.10	+03 45 31.68	G	(0.279)	42.3	6.4	218.8	33.1	50.7	53.4	_	A	13
J0910+0 J0914+1		09 14 19.53	+10 06 40.59	G	0.308	216.2	48	1709	379.7	252.5	129.1	8.56	A	a
J0914+1 J0921+4			+45 38 57.36	G	0.174	70.1	24	438.5	150	90	8046	8.43	A	17,18,19
J0921+4		09 24 49.04	+06 02 42.80	G	0.231	80.8	22.1	438.5	116	4.8	90	8.85	A	a
J0927+2		09 27 44.88	+29 32 32.30	S	-	-	24	-	115	19	17	-	A	8
J0927+3		09 27 50.59	+35 10 50.73	G	(0.55)	575.5	90	2206	345	3	96	_	A	20
J0929+4		09 29 10.66	+41 46 45.59	G	0.365	655.6	130	1876	372	64	99	_	A	21,d,g
J0935+0			+02 04 15.54	Q	0.6491	69.9	10.1	498	71.96	230.3	547.6	9.56	A	22
J0943-0			-08 19 30.81	Ğ	0.228	0.18	0.05	72.34	20	3232	26	_	B?	23,h
J1004+5	5434	10 04 51.83	+54 34 04.29	G	0.047	55.2	60.6	694.2	762.9	90	110	8.72	A	24,a
J1006+3	454 3C236	10 06 01.73	+34 54 10.52	G	0.101	1.8	1	4248	2310	2500	3300	8.70	A	25,26,27
J1021+1	216 ^a	10 21 24.21	+12 17 05.44	G	0.129	876.4	385	1865	819.4	67.3	55	8.56	A	4,a
J1039+0	536	10 39 28.21	+05 36 13.62	G	0.35	81.5	16.6	488.7	99.6	54.9	594.9	-	A	13
J1103+0		11 03 13.29	+06 36 16.00	G	0.4406	66.3	11.7	548.8	96.9	13.2	79.9	8.24	A	13
J1158+2			+26 21 12.07	G	0.112	139	69	483.8	240	67	962	7.96	A	13,28
J1159+5		11 59 05.68	+58 20 35.57	G	0.054	23.2	22.4	348.2	335.8	5.3	319.1	8.60	A	29
J1208+0		12 08 56.78	+08 21 38.57	G	0.5841	111.3	16.9	648.9	98.5	2	51.9	9.27	A	13
J1238+1		12 38 21.20	+16 02 41.42	S	-	-	40.8	_	115.6	8.9	56.5	-	A	13
J1242+3		12 42 36.82	+38 38 06.15	G	0.408	308.3	57	735.5	136	8	24	8.72	A	30
J1247+6		12 47 33.31		G	0.107	0.019	0.01	1196	618	260	126	8.63	A	31,32
J1325-4	301 Cen A	13 25 27.62	-43 01 08.81	G	0.0018	21.3	67	266.4/ 533	1800 ⁱ 14 400	28- 10 ⁴	52-10 ⁴ 96-10 ⁴	-	A	33,34
J1326+1	924	13 26 13.67	+19 24 23.75	G	0.1762	26	8.8	150.6	51	6	81.8	8.93	A	13
J1328+2			+27 52 27.81	G	0.0911	97.3	58	220.8	131.7	27.9	219.9	7.82	A	13
J1344-0		13 44 46.92		G	0.5801	85.4	13	631	96.1	20.1	48.7	8.73	A	13
J1352+3				G	0.045	1.1	1.2	179.5	204.2	3703	1209	8.15	A	35
J1407+5				G	(0.324)	84.8	18.2	707.5	151.8	9.2	646.2	_	A	13
J1409-0		14 09 48.85		G	0.1378	52.9	22	308	128	4	48	8.61	A	36,d
								1373	570		112			
J1443+5	201 3C303	14 43 02.75	+52 01 37.23	G	0.1412	81.9	33.3	90.9	37	1500	935	8.07	в	1
J1453+3			+33 08 42.40	G	0.249	158.5	41	1299	336	34	426	9.02	A	30,37
J1500+1			+15 42 40.56	G	(0.456)	124.2	21.5	480.7	83.2	11.1	17.8	_	A	13
J1504+2	600 3C310	15 04 57.12	+260058.46	G	0.0538	152.1	147.1	255.4	247	1547	5846	8.29	B	38



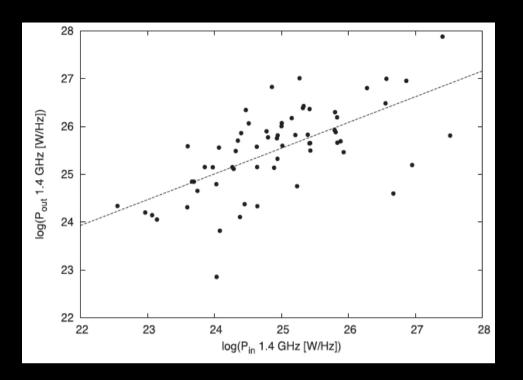
 12 09 01


00 08 59


58 57 56 55 Right Ascension (J2000)

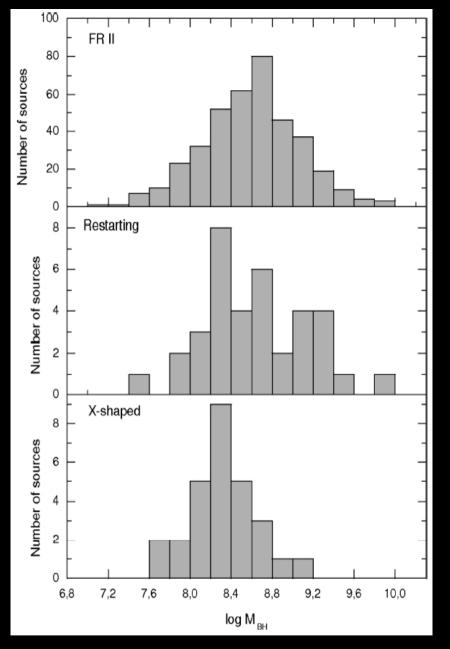
Kuzmicz et al., 2017, MNRAS, 471, 3806

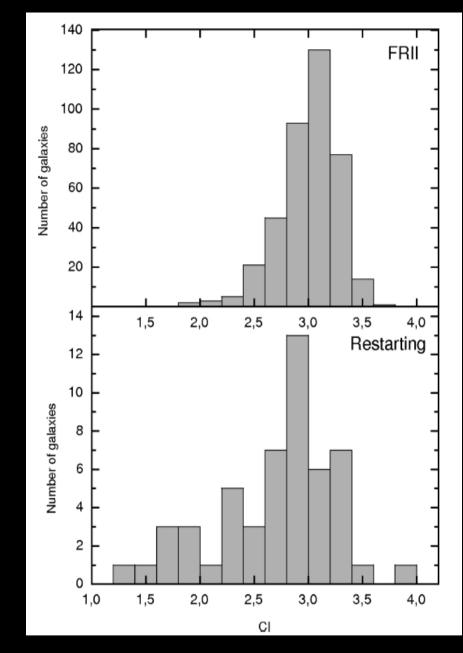
Konar, Hardcastle, 2013, MNRAS, 436, 1595



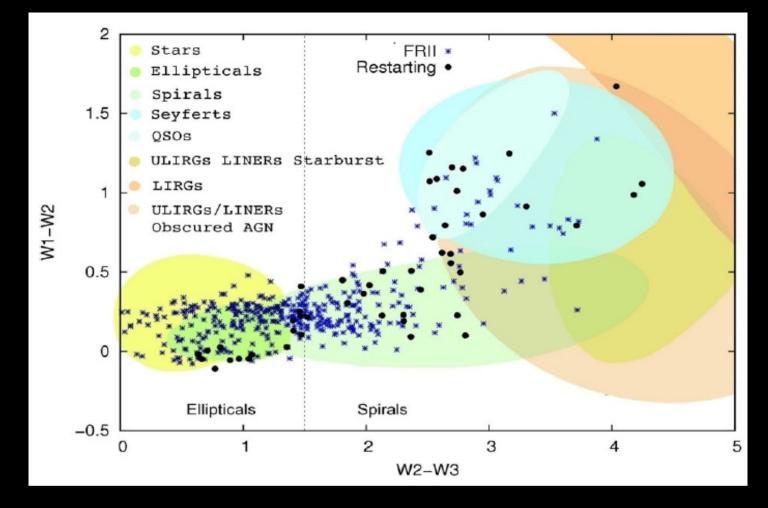
values of **injection index** (the low frequency power-law index of synchrotron emission) **are similar in the two different episodes** for most of the DDRGs

injection index is strongly dependent on the jet power

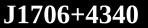

jet power in the two episodes of a DDRG needs to be the same, or at least similar,


There is a strong correlation between the radio luminosity of the inner and outer lobes.

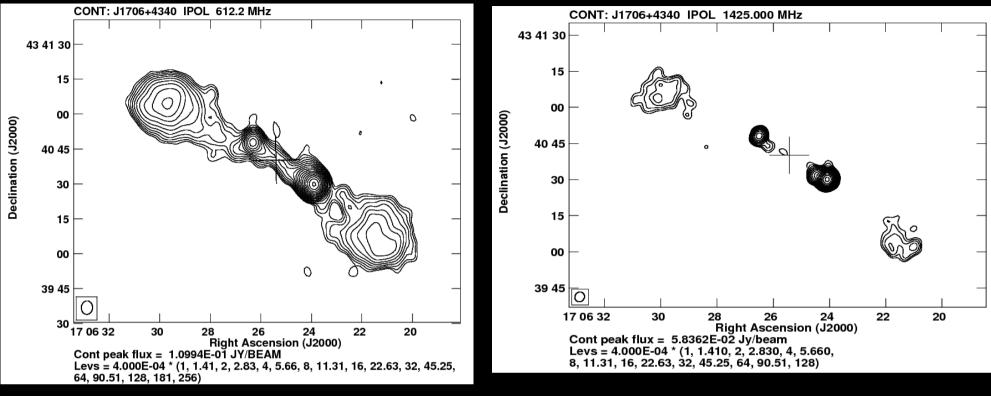
Source J2000 name (1)	Alt. name	z (3)	Size (kpc) (4)	t_{quies} (Myr) (10)
J0041+3224	B2 0039+32	0.45	969	0.7-5.7
J0116-4722	PKS 0114-47	0.43	1447	1.4-65.4
J0840+2949	4C 29.30	0.064 715	639	2.0-102.0
J1158+2621	4C +26.35	0.112 075	483	6.6-11.0
J1453+3308	4C +33.33	0.248 174	1297	12.4-21.1
J1548-3216	PKS 1545-321	0.1082	961	$0.05 \dagger - 29.2$
J1835+6204	B 1834+620	0.5194	1379	1.0 - 6.6
J1211+7419	4CT 74.17.01	0.1070	845	$0.01 - 0.83^{\xi}$


quiesence time ~10% age of the old structure

The BH masses of radio sources with recurrent activity are similar to those observed in FRII radio galaxies, median values of log MBH are 8.58 and 8.62 M_{SUN}



The CI for the restarting radio sources tends to be slightly lower than that of the FRII sources, which indicates that they can have **hosts with more disturbed morphologies**.



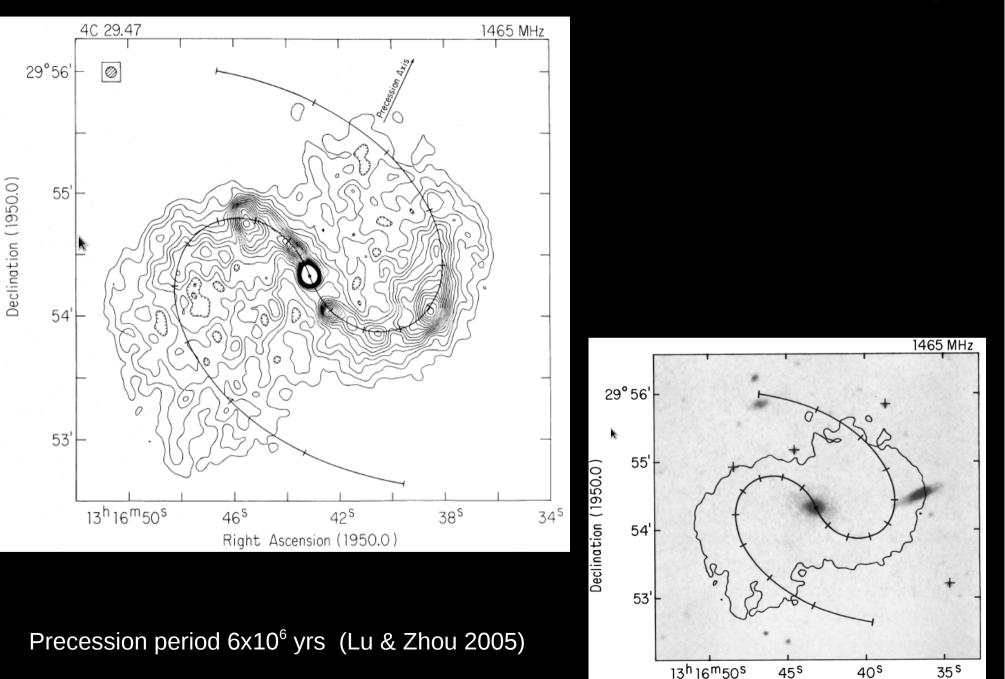
The infrared WISE colour–colour diagram shows that the 67% hosts of recurrent jet activity radio galaxies reside in the region typical for spiral galaxies or other dusty, late-type galaxies with some ongoing star formation

The hosts of restarting radio sources contain a larger amount of young stars.

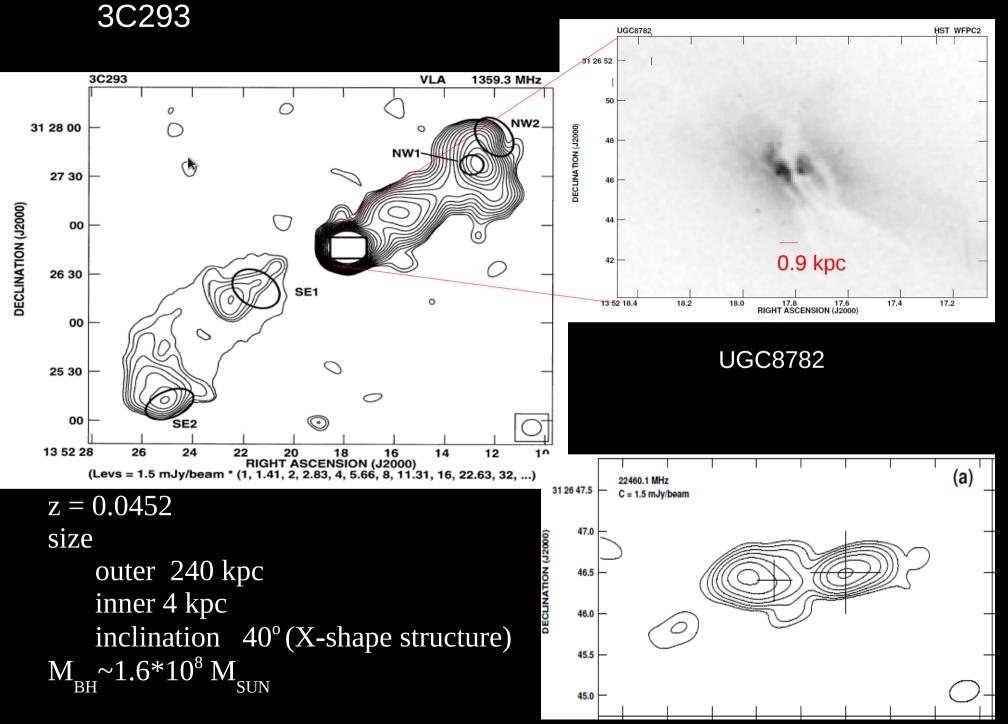
Marecki et al. 2016, MNRAS, 463, 338

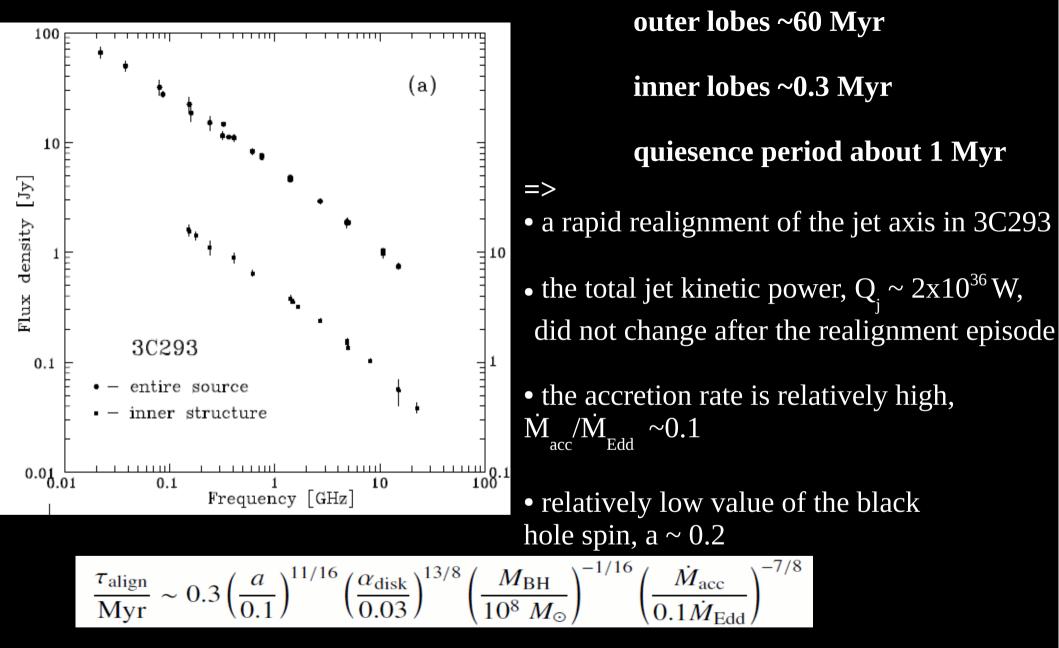
• age:

of the large-scale outer lobes is in the range 260-300 Myr of the inner lobes 12 Myr

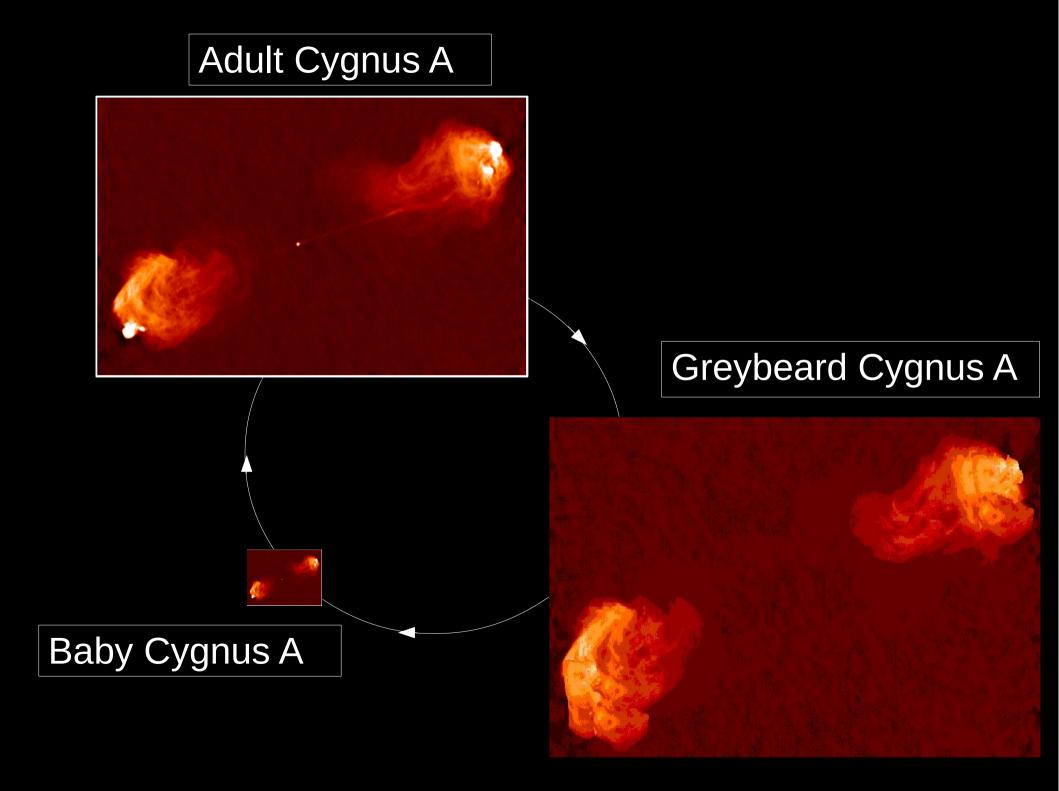

- quiesence period about 27 Myr
- injection spectral indices and the jet powers for the inner and the outer doubles are very similar.

=> the spin of the supermassive black hole rather than e.g. an instability of the accretion disc is likely responsible for the jet production and its properties.

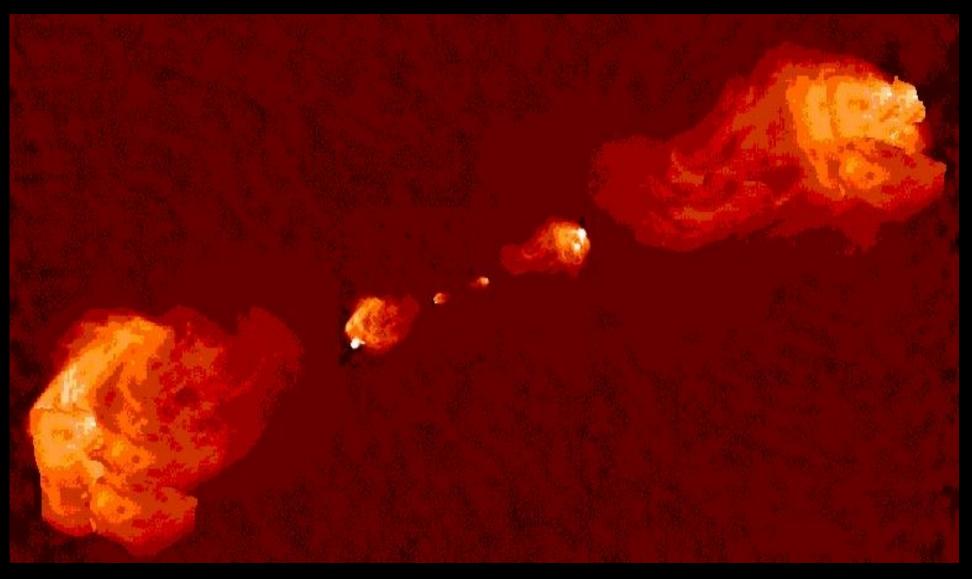

4C29.47 (Condon & Mitchell 1984)


Precession of the SMBH spin

Right Ascension (1950.0)



Machalski et al. 2016, A&A, 595, 46



===> Tilted accretion disk + low value of black hole spin => rapid realignment of the jet axis, leading to the formation of winged radio morphologies <= the Lense-Thirring precession model

