Young radio sources and the duty-cycle of the radio emission

Monica Orienti (INAF-IRA)

Co-I: D. Dallacasa, F. D'Ammando

Monica Orienti

Life Cycles 2018

ASTRON, 26/03/2018

- Introduction on young radio sources
- Radio properties of very compact radio sources
- Young radio sources: physical properties and evolution
- Searching for short-lived objects

Compact radio sources

- Powerful $L_{1.4 \text{ GHz}} > 10^{25} \text{ W/Hz}$;
- Steep spectrum $\alpha > 0.7$;
- ν_{p} ~100 MHz to a few GHz
- Compact size LS < 1 20 kpc
- High fraction (15%-30%) in flux-density limited catalogues
- Low (<10%) variability

Peak frequency – Linear size

$$CSS \qquad \left\{ \begin{array}{l} LLS < 20 \text{ kpc} \\ \nu_{t} \sim 50 - 100 \text{ MHz} \end{array} \right\}^{10} \\ \mathbf{GPS} \qquad \left\{ \begin{array}{l} LLS < 1 \text{ kpc} \\ \nu_{t} \sim 1 \text{ GHz} \end{array} \right\}^{10} \\ \nu_{t} \sim 1 \text{ GHz} \end{array} \right\}^{10} \\ \mathbf{HFP} \qquad \left\{ \begin{array}{l} LLS < 100 \text{ pc} \\ \nu_{t} \geq 4 \text{ GHz} \end{array} \right\}^{10} \\ \mathbf{Th} \\ \mathbf{Th}$$

The smaller the source, the higher the turnover frequency (O'Dea 98)

Radio morphology

Scaled-down version of the extended radio sources. They should represent the young stage in the radio source evolution (Phillips&Mutel82)

7 pc

15 GHz peak= 369.3; f.c.= 0.9 (mJy/beam)

HFP/CSO

J1511+0518

0 MILIARC SEC **GPS/CSO**

995.459 MHZ peak = 27.00; f.c. = 0.65 (mJy/bea

lore

CSS/MSO

The youth scenario

Compact — Frustrated

No clear evidence of a particularly dense ISM able to frustrate the source expansion **for its lifetime**

Evolutionary stages

The higher the turnover frequency, the smaller and younger the source is.

Count excess

Excess of young radio sources in fluxdensity limited catalogs cannot be explained with luminosity evolution.

The age distribution of a sub-sample of 13 CSS peaks ~500 yr.

ISM or fading/recurrent radio emission?

The large fraction of young radio sources may be explained in terms of ISMjet interaction, short-lived and/or recurrent radio sources

ISM-jet interplay: higher incidence of asymmetric sources than in LSO

Faders: young sources (t~10³ yr) with no active regions

Majority lack spectral index studies

Recurrent activity

Old steep-spectrum emission hard to find

The duty-cycle of the radio emission

Source evolution:

- Luminosity
- Magnetic field
- Velocity expansion
- Energetics

Influencers:

- ISM
- Jet power

The duty-cycle of the radio emission

Source evolution:

- Luminosity
- Magnetic field
- Velocity expansion
- Energetics

Influencers:

- ISM
- Jet power

CSS/GPS: physical properties

We select a sample of bona-fide young radio sources from different CSS/GPS samples (Fanti+90,01, Dallacasa+95,00, Snellen+98, Stanghellini+98,09, Peck&Taylor00)

- Clear core detection
- Known z (spectroscopic/photometric)

48 objects, 31 galaxies and 17 quasars with LS \sim 10 pc to 30 kpc

Suitable for investigating radio emission at different evolutionary stages

Turnover frequency - LLS

Empirical correlation

 $\log v_{p} \sim -0.21 - 0.59 \log LLS$

Deviation at small LLS

Turnover frequency - LLS

Luminosity

Total luminosity at 375 MHz

Absorbed sources: 375-MHz flux extrapolated using the optically-thin spectral index

Core luminosity at 5 GHz

No 5-GHz data: flux extrapolated assuming a flat spectrum

Galaxies + Quasars, similar to FRI/FRII:

$$L_{core} \sim 6.5 + 0.67 L_{tot}$$

Galaxies only

$$L_{core} \sim 12.28 + 0.5 L_{to}$$

Quasars only

$$L_{core} \sim 11.94 + 0.5 L_{tot}$$

Quasars and galaxies have same slope and an offset in Lcore

Quasars+galaxies: steeper slope driven by segregation in Lcore and Ltot

Luminosity - LLS

Galaxies only: luminosity evolution consistent with models

$$LS \leq 4 \, kpc : L_{tot} \uparrow$$

$$LS \ge 4 \, kpc : L_{tot} \checkmark$$

Low statistics for LLS ~ 1 kpc Quasars cluster at high Ltot and Lcore Quasars may suffer from projection

Role of ISM in young radio sources

AIM: determine the morphology and spectral index distribution in GPS sources

HOW: multi-frequency VLBI observations of 10 GPS + 9 HPF (from Dallacasa+95, Dallacasa+00)

Results: 7/10 GPS have core identification 6/7 have two-sided structure 3/6 asymmetry caused by projection

Results: 5/9 HFP have core identification 4/5 have two-sided structure 2/4 asymmetry caused by projection

Asymmetries in "symmetric" objects

We complemented our results with those from other samples of CSS/GPS with LS up to a few kpc.

Brighter-when-closer in >50% of sources

Rs > 10 need either large β or small viewing angle θ

Fading radio sources

AIM: constraining the incidence of fading objects at different evolutionary stages

MODELS:

1) intermittent radio emission lasts 10⁴⁻⁵ yr and recurs 10⁵⁻⁶ yr (Reynolds&Begelman97)

2) intermittent radio emission lasts $<10^{3-4}$ yr and recurs 10^{4-5} yr (Czerny+03)

EXPECTATIONS:

1) excess of MSO (LS > 1 kpc) (Reynolds&Begelman97)

2) excess of CSO (LS < 1 kpc) (Czerny+97)

Searching for faders

Looking for candidate faders from the Fanti+01 B3-VLA CSS sample

Selection criteria:

- Steep spectrum with $\alpha > 1.0$
- No evindence of active regions

18 CSS source: 12 with LLS > 1 kpc, 6 with LLS < 1 kpc

LS < 1 kpc: preliminary results

VLBA observations at 1.4, 5, 8.4 GHz

4 out of 25 sources (~16%) with LS < 1 kpc in the Fanti et al. sample do not show active regions

2 sources with clear detection of the core

LS > 1 kpc: preliminary results

VLA observations from 1 to 17 GHz

- 4 sources fully calibrated
- 3 sources with active regions
- 1 source with no active regions
- 8 sources analysis in progress

Conclusions

- Young radio sources provide insight on the initial conditions of the evolution of the radio emission
- Luminosity evolution of high-power young radio galaxies agrees with the expectation from evolutionary models
- Incidence of asymmetric morphology likely produced by ISM interaction is high in young radio sources
- Over-abundance of young radio sources indicates the existence of a population of short-lived/recurrent objects
- The time scale of recurrent activity is still far to be constrained
- The high sensitivity and resolution at low frequencies are crucial for our knowledge of the life cycle of the radio emission