Long-term variability: a missing link in understanding radio source populations?

Clive Tadhunter University of Sheffield

Powerful radio AGN: P_{1.4GHz}>10²⁴ W Hz⁻¹

NASA, ESA Baum, O'Dea, Perley, Cotton

Powerful radio AGN samples

Sample	Selection	
2Jy	$S_{2.7 \mathrm{GHz}} > 2 \mathrm{Jy}$	
Dicken et al. (2009)	0.05 < z < 0.7	Typically
	$\delta < +10^{\circ}$	$D > 10^{24} M H^{-1}$
	$\alpha_{2.7}^{4.8} > +0.5$	for FRI
	$(F_{\nu} \propto \nu^{-\alpha})$	
3CR	$S_{178\mathrm{MHz}} > 9\mathrm{Jy}$	$P_{1.4GHz} > 10^{25} \text{ W Hz}^{-1}$ for FRII
Buttiglione et al. (2009)	z < 0.3	_
	$\delta > -5^{\circ}$	

Classification of radio-loud AGN – I Radio morphlogies

 $P_{178Mhz} < 5 \times 10^{25} \, W \, Hz^{-1}$

 $P_{178Mhz} > 5 \times 10^{25} \, W \, Hz^{-1}$

What determines the radio morphology?

• <u>Properties of central engine</u>. Differences in central engine (e.g. accretion rate) leading to variations in jet speed and intrinsic power

- <u>Environment.</u> Similar central engines but differences in gaseous environment into which jet propagates (e.g. entrainment leading to jet disruption)
- Or some combination...

Fuelling rate: evidence for an Eddington switch

Transition from WLRG/LEG to SLRG/HEG due to switch between radiatively-efficient accretion disk and radiatively-inefficient accretion flow (RIAF) at fixed Eddington ratio (~1%)

Correlations between optical and radio classifications

Classification breakdown for 2Jy and 3CR sample

Туре	Sample (N)	%WLRG	%NLRG	%BLRG/QSO
FRI	3CR (22)	100	0	0
	2Jy (15)	100	0	0
FRII	3CR (78)	24	54	21
	2Jy (39)	23	41	36
CSS/GPS	3CR (4)	25	75	0
	2Jy (7)	0	71	29
FRI/FRII	3CR (5)	60	40	0
	2Jy (4)	100	0	0
Other	3CR (4)	25	25	50
	2Jy (2)	0	0	100

Tadhunter et al. (2016)

A possible FRI/SLRG exception: 3C84

0.

4000

5000

Buttiglione et al. (2009)

6000

7000

optical emission lines (\rightarrow SLRG/HEG)

Link between optical and radio classifications

- FRI invariably associated with WLRG/LEG and SLRG/ HEG with FRII
- WLRG/SLRG divide due to accretion rate and Eddington switch
 - → Suggests that FRI/FRII divide might also be related to accretion rate
- WLRG/FRII are misfits...
- But could we explain WLRG/FRII properties in terms of long-term variability?

AGN radial extents and light crossing times

Region	Radial extent	Light travel time
Broad-line region	0.003 – 0.3 pc	0.01 – 1 yr
Torus	0.1 – 100 pc	0.3 – 300 yr
Narrow-line region	0.003 – 3 kpc	10 – 10,000 yr
Radio source	10 ⁻⁵ – 4 Mpc	30 – 10 ⁷ yr

Evidence for radio source intermittency

Her A

Hanny's object

Hannys object has been interpreted as the light echo of a luminous AGN in the nearby spiral galaxy that switched off ~50,000 yr ago (Lintott et al. 2009)

Extreme low excitation radio galaxies

Extreme low excitation radio galaxies have been interpreted as objects in which AGN switched off $\sim 10^4 - 10^7$ yr ago

Buttiglione et al. (2010), Capetti et al. (2013)

PKS0347+05: a recently "switched off" AGN?

The source PKS0347+05 has an extremely powerful FRII radio source, PAH evidence for strong star formation, and a large gas/dust mass, yet shows only weak emission line activity at optical and mid-IR wavelengths → likely that this radio source as recently "switched off"

Light travel time effects

Hot spots remain visible for time ~D/2c after AGN has switched off. Fraction of WLRG in population of powerful FRII 2Jy radio sources (for $P_{5GHz} > 10^{26}$ W Hz⁻¹) f_{wlrg} = 0.1; and mean diameter D_m ~300 kpc.

→Average lifetime of FRII radio sources: t_{rad} = D_m/(2cf_{wlrg}) ~5x10⁶ yr

Level of intermittency of radio-loud AGN activity

Fraction of time that AGN "off" < f_{wlrg}
~0.1 (high power 2Jy FRII)
→ The quasar is "on" for the overwhelming majority of the time for a particular triggering event/activity cycle.

Link between relaxed/fat doubles and WLRG/FRII

~50% of 25 WLRG/FRI in 3CR and 2Jy are relaxed/fat doubles compared with only ~10% of the SLRG/FRII

Evidence that ELERG/FRII 3C28 is a radio relic

Harwood et al. (2015)

Source switched off ~6 – 9 Myr ago

Far-IR properties of WLRG – I 2Jy WLRG/FRI

Dicken et al. (2008, 2018)

Only 1/6 FRI/WLRG in the 2Jy sample show evidence for thermal dust emission at far-IR wavelengths (see also Cleary et al. 2007; Dicken et al. 2008; Leipski et al. 2009; van der Volk et al. 2010)

Far-IR properties of WLRG – II 2Jy WLRG/FRII

All 5 WLRG/FRII in the 2Jy sample show evidence for thermal dust emission at far-IR wavelengths.

Relationship between ISM mass and classification of radio AGN in 2Jy sample

Arguments against WLRG/FRII as "switched off" SLRG/FRII

• Some WLRG/FRII have relatively bright radio cores But...

- Radio cores in at least some WLRG/FRII substantially weaker relative to total emission than in typical SLRG/FRII ($P_{core}/P_{ext} < 10^{-3}$ at 2.3GHz)

- If objects dropped to lower accretion rate, cores wouldn't necessarily be much weaker (radio cores in FRI stronger than in FRII)

• Tend to be in richer galaxy environments But...

- Selection effect: dense gaseous environment could increase timescale over with relic radio source is visible by confinement effects

- Duty cycle of intermittent activity might be faster in clusters due to nature of fuel supply

Conclusions

- Links between FRI and WLRG, and SLRG and FRII, suggest that not just optical activity, but also radio morphology, linked to accretion rate (e.g. Eddington switch)
- WLRG/FRII apparently discrepant, but might be explained as SLRG/FRII that recently switched off, or entered phase of lower activity
- The rarity of WLRG/FRII suggests that, within a cycle of SLRG activity, the AGN is "on" for >75 – 90% of the time (many millions of years...)