EXPLORING THE TRIGGERING OF RADIO-INTERMEDIATE HERGS

JONNY PIERCE

COLLABORATORS: CLIVE TADHUNTER (UOS) CRISTINA RAMOS ALMEIDA (IAC)

LOCAL RADIO LUMINOSITY FUNCTION

Best & Heckman 2012

LOCAL RADIO LUMINOSITY FUNCTION

Best & Heckman 2012

RADIO-POWERFUL AGNs

HIGH-EXCITATION RADIO GALAXIES (HERGS)

- Clear tidal features are <u>common</u> (in 94%)
- Dense, <u>group-like</u> environments
- MERGERS are dominant triggering mechanism

LOW-EXCITATION RADIO GALAXIES (LERGS)

- Clear tidal features are <u>rarer</u> (in 27%)
- Very dense, <u>cluster-like</u> environments

- Dominant triggering **NOT BY MERGERS**

FIG. 9.— A schematic model showing the changes in the accretion disk from a broad-line AGN with high accretion rate $(L_{int}/L_{Edd} \sim 0.1)$ to a narrow-line or lineless AGN with low accretion rate $(L_{int}/L_{Edd} \sim 0.003)$. The x axis shows the radial distance from the black hole in units of GM/c^2 . The y axis is qualitative only. At $L_{int}/L_{Edd} \leq 0.01$, the disk wind falls inside the RIAF. As a result there are no broad emission lines, the hot dust signature becomes very different, and the radio jet becomes stronger.

LOCAL RADIO LUMINOSITY FUNCTION

Best & Heckman 2012

Best & Heckman 2012

'Teacup' - $P_{1.4 \text{ GHz}} \sim 5 \times 10^{23} \text{ W Hz}^{-1}$ (Harrison et al. 2015)

'Beetle' - $P_{1.4 \text{ GHz}} \sim 2 \times 10^{23} \text{ W Hz}^{-1}$ (Villar-Martin et al. 2017)

Mullaney et al. (2013): Broadest [OIII] lines in radio AGNs with <u>P_{1.4 GHz} ~ 10²⁴ W Hz⁻¹</u>

IC 5063 - <u>P_{1.4 GHz} ~ 3 x 10²³ W Hz⁻¹</u> (Tadhunter et al. 2014)

Best & Heckman 2012

Best & Heckman 2012

Best & Heckman 2012

DEEP OPTICAL IMAGING

SAMPLE

32 RIAGNs with $P_{1.4GHz} \sim 10^{22.5} - 10^{24} \text{ WHz}^{-1}$

z < 0.1

HERG optical emission

OBSERVATIONS

INT Wide-Field Camera, La Palma Sloan *r*-band Limiting SB ~ 27 mag arcsec⁻²

IMAGES

$23.08 < \log(P_{1.4GHz}) WHz^{-1} < 24.0$

Streams

Tail

Fan

Shell

RESULTS - TIDAL FEATURE PROPORTIONS

RESULTS - HOST TYPES

MORPHOLOGY	PROPORTION	
<u>DISK/SPIRAL</u>	21 (66%)	
ELLIPTICAL	5 (16%)	
M E R G E R	6 (18%)	

Host morphologies are mainly <u>disk-like</u>

- Lowers chances of significant major merger

3CR, 2 Jy are predominantly giant ellipticals (> 95%)

FUTURE WORK - OPTICAL

VLA

<u>High-resolution</u> L-/C-band observations

20 HERGs; <u>P_{1.4GHz} ~10²³ - 10²⁴ WHz⁻¹</u>

- Existing deep optical images
- Compact at FIRST res. (~5")

<u>Two</u> main goals...

INVESTIGATE FRII/HERG CONNECTION

'<u>Mini-FRIIs'</u> or <u>FR0s</u>?

Fig. 2 The J/LA maps at 7.5 GHz of the three FRDs (from left top: 567, 590, and 606) which show extended structure (resolution of -0.22, See Baidi et al. (2015) for the expanded radio maps.

Baldi, Capetti & Giovannini (2015)

Common <u>accretion mode</u> or driven by <u>environment</u>?

Fig. 1 The main radio and optical classifications of radio AGN. *Left* radio morphological classifications. *Right* optical spectroscopic classifications. The *dashed lines* indicate links between the radio and optical classifications. Credits: the radio images were taken from http://www.jh.man.ac.uk/atlas

Tadhunter (2016)

SCALES FOR RADIO JET FEEDBACK

NLR (<u>~ 1 kpc</u>)

'Teacup' - (Harrison et al 2015)

Bulge (up to <u>~10 kpc</u>)?

'Beetle' - (Villar-Martin et al. 2017)

or

HOST GALAXY PROPERTIES

Jet <u>orientation</u> relative to disks?

Capetti & Celotti (1998)

<u>Entrainment</u> more likely in galaxies with bulges?

Laing & Bridle (2014)

Radio-intermediate HERGs have <u>reduced proportion of tidal features</u> and <u>more disk-like hosts</u> than their radio-powerful counterparts

Implies <u>merger-based triggering is less important</u>

High-res. VLA observations will provide information about <u>radio</u> <u>morphologies</u>, <u>scales</u> of radio-jet feedback and relationship with <u>host</u> <u>galaxy properties</u>

FUTURE WORK

- <u>Environments</u>
- Control sample

- Host morphologies
- Statistics will improve with new observations

<u>Multiple peaks</u> in BH accretion rate throughout galaxy mergers

Timescale of separations <u>comparable with life-cycle</u> <u>times</u> of radio sources: ~10⁷-10⁸ yrs (Morganti 2017)

Capelo et al. (2015)

Volonteri et al. (2015)

HERGs have systematically lower stellar masses, D_n(4000) and black hole masses for RI cases

> ... also **bluer** colours, **less diffuse** optical emission

Best & Heckman 2012

RESULTS - TIDAL FEATURE TYPES

TF TYPE	RI Sample		2 Jy
P _{1.4GHz}	10 ^{22.5} - 10 ^{23.08} WHz ⁻¹	10 ^{23.08} - 10 ²⁴ WHz ⁻¹	$> 10^{25} \text{WHz}^{-1}$
TAIL	<u>54%</u>	<u>50%</u>	17%
FAN	27%	13%	16%
SHELL	19%	21%	32%
BRIDGE	_	8%	9%
DOUBLE NUCLEUS	_	4%	10%
IRREGULAR	_	4%	9%

Evidence for galaxy interactions in PRGs

► 81% of the 3CR sample show signs of morphological disturbance

3CR (84)	SLRG (62 – 74%)	WLRG (22 – 26%)
81%	82%	77%
2Jy (46)	SLRG (35 – 76%)	WLRG (11 – 24%)
85%	94%	27%

73 3CR + 46 2Jy = 119 PRGs of which 83% show disturbed morphologies Ramos Almeida, Doña-Girón, Tadhunter et al. in prep.

ROE seminar - 5th October

Cristina Ramos Almeida

PRELIMINARY