AGN Feedback and the Lifecycles of Radio Galaxies

Geoff Bicknell¹ Dipanjan Mukherjee^{1,2} Nicole Nesvadba³ Ralph Sutherland¹ Alex Wagner⁴

1 Research School of Astronomy & Astrophysics, Australian National University

2 Dipartimento di Fisica, Universita degli Studi di Torino

3 Institut d'Astrophysique Spatiale, CNRS, Centre Universitaire d'Orsay

4 Center for Computational Sciences, University of Tsukuba, Japan

Radio galaxies and AGN feedback

- Radio-active phase part of the life-cycle of all galaxies
- Significant amount of energy and momentum injected into the ISM during this phase
- Radio galaxies heat cooling flows prevent further accretion
- Used in modelling the galaxy luminosity function (Croton+'06)

Feedback at earlier epochs

Contrasting physics:

- ISM in evolving galaxies is inhomogeneous
- AGN feedback is not just a matter of heating the ISM
- Dispersal of gas (-ve feedback) and/or compression leading to star formation (+ve feedback)
- Proposition: AGN feedback connected to the physics of Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources

M-sigma relation

$$M \propto \sigma^{5-6}$$

- Magorrian+ 1998 –
 Relationship between black
 hole mass and mass of bulge
- Gebhardt+ 2000 –
 relationship between mass and velocity dispersion

 $M\propto\sigma^4$

 Silk & Rees 1998 – relationship the result of feedback

$$M\propto\sigma^5$$

Star formation rate as a function of redshift

Peak in star formation rate coincides with peak in quasar density – indicates star formation (and quenching of star formation?) linked with AGN activity

GPS source PKS1718-649 Tingay+ `15

CSS source 3C303.1 Leahy & Perley '91 OIII emission

3C293: Mahony+ 2016

Narrow [OIII] component shows rotation

Broad [OIII] component shows outflow on one side

To follow:

- Parameters of simulations from optical spectroscopic data
- Clumpy atmospheres
- Sector Sector Section Section
- Implications of steep slopes
- Comparison with peak frequency size anticorrelation

Environment:

Galaxy & atmosphere parameters @ z~2-3

- Ryan Sanders+ 2016: Electron densities in star-forming galaxies @z~2.3 ~ 200-300 cm⁻³
- Shirazi+ 2016: Electron densities in z~2.6-3.4 starforming galaxies range from 120 - 2800 cm⁻³
- Förster-Schreiber+ 2009 (Clumpy) Ha Velocity dispersions
 35–280 km s⁻¹

Simulations:

Baryonic and dark matter parameters

Parameters	Value	
Baryonic velocity dispersion	σ_B	$250 {\rm ~km~s^{-1}}$
Baryonic core radius	$r_{ m B}$	$0.4, 1.0 \; \mathrm{kpc}$
Ratio of dark matter to baryonic core radii	$r_{ m D}/r_{ m B}$	5
Dark matter velocity dispersion	$\sigma_{ m D}$	$500 {\rm km s^{-1}}$
Halo Temperature	$T_{ m h}$	$10^7 \mathrm{K}$
Central hot halo density	$n_{ m h,0}$	$0.5\mathrm{cm}^{-3}$

Jet and ISM parameters

		Warm clouds				
Model	$\log P_{\rm jet}$	$\sigma_{ m c}$	n_0	Mass	$T_{\rm floor}$	r_B
	$ m ergs~s^{-1}$	$\rm km \ s^{-1}$	cm^{-3}	M_{\odot}	Κ	kpc
Α	44	50	400	6.46×10^{9}	10^{2}	1.0
В	44	100	150	2.89×10^9	10^{4}	1.0
C	45	50	400	6.46×10^9	10^{2}	1.0
D	45	100	150	2.89×10^9	10^{4}	1.0
Е	45	100	200	2.44×10^9	10^{2}	1.0
F	45	100	300	9.24×10^9	10^{4}	1.0
G	45	250	400	$6.61 imes 10^9$	10^{2}	1.0
Н	45	250	1000	3.47×10^9	10^{2}	0.4
Ι	46	250	1000	3.47×10^9	10^{2}	0.4
J	46	250	2000	4.76×10^{10}	10^{2}	1.0
Κ	46	300	1000	1.20×10^{10}	10^{2}	0.4

Gas masses at higher end of range inferred for high z radio galaxies by Nesvadba+ 2011, Cano-Diaz+ 2012, Carnian+ 2015

Jet power

Most important range of 1.4 GHz radio power around 10²⁵ W Hz⁻¹

Corresponds to jet power ~ 1043-45 ergs s-1

Establishing a clumpy medium

Clouds embedded in hot atmosphere:

- Log normal density distribution
- Power-law in Fourier space
- Pressure equilibrium with hot ISM defines temperature
- Supported by turbulent velocity dispersion in gravitational field
- Low density cutoff when T > 3.4 x 10⁴ K produces clumpy distribution

Gas distribution

- Holes in distribution of dense gas result of low density cutoff
- Radial distribution of dense gas result of turbulent pressure support in gravitational field - turbulent
 hydrostatic equilibrium

Simulation of jet – ISM interaction

Mid-plane slice of log(density)

10⁴⁵ erg/s relativistic jet propagating through dense clouds embedded in a hot atmosphere

Radio source disperses
gas inhibiting star
formation – AGN feedback

Clouds free-free absorb radio emission producing low frequency peak in spectrum

Radial component of gas velocity

ISM becomes turbulent but gas not driven to escape velocity

Duty cycle of activity important

Density, radio surface brightness, spectrum

GPS and CSS sources

Integrate through simulation to determine surface brightness and spectrum

 Low frequency power-law attributed to distribution of freefree optical depths (GB, Dopita, O'Dea 1997)

Synchrotron emissivity

Assume electron energy density and magnetic energy density proportional to total energy density

Electron energy distribution: $N(\gamma) = K\gamma^{-a}$ $a = 2\alpha + 1$

Free-free absorption

Integrate

$$\frac{dI_{\nu}}{ds} = \langle j_{\nu} \rangle - \alpha_{\nu} I_{\nu}$$

along rays through volume

Frequency

dependence

Spectral evolution:

 $P_{jet}=10^{45} \text{ ergs/s } \sigma_{cloud}=250 \text{ km s}^{-1} n_{cloud,0} = 400 \text{ cm}^{-3}$

- Peak moves to lower
 frequencies as source
 evolves Effect of
 decreasing density and
 path length
- Spectral slope flattens

 Effect of increasing
 dispersion in optical
 depth

Spectrum and optical depth

HE AUSTRALIAN NATIONAL UNIVER

Comparison of 0.09 Myr and 1.56 Myr spectrum

GLEAM survey (Hurley-Walker+ 2017) Peak spectrum sources: Callingham+ 2017

6 sources from
 Callingham+ 2017 with
 low frequency spectral
 index > 2.5

- Rules out synchrotron self absorption as the cause of low frequency peak
- Models suggest that these are young sources

Turnover frequency and size (O'Dea & Baum '91)

Inverse correlation

GPS and CSS sources represent different evolutionary stages of radio galaxies

Low density (150-200 cm⁻³) & medium density (300-400 cm⁻³)

Energetics and life-cycles of radio sources

Higher densities (n ~ 1000 cm-3)

- High density starts to populate upper part of correlation
- Very high density (n=2000 cm⁻³) pushes source well off correlation
- Still have a decrease in peak frequency resulting from decrease in gas density beyond core radius

Dark matter, stars and gas

Parameters of dark matter and stars (baryons):

$$\kappa = \text{Ratio of velocity dispersions} = \frac{\sigma_D}{\sigma_B}$$

 $\lambda = \text{Ratio of core radii} = \frac{r_D}{r_B}$

Asymptotically:

$$\frac{\rho_B}{\rho_{B,0}} \sim r^{-2\kappa^2}$$

For $\kappa^2 = 3/2$ $\rho_B \sim r^{-3} \approx$ Reynolds-Hubble law

Gas distribution

Gas distribution defined by dispersion relative to baryons:

 $\frac{\sigma_W}{\sigma_B}$

$$\frac{n_W}{n_{W,0}} \sim r^{-2\kappa^2 (\sigma_W/\sigma_B)^{-2}}$$

New simulation:

$$\kappa = \sqrt{3/2} \quad \frac{\sigma_W}{\sigma_B} = 1.2 \Rightarrow n_W \sim r^{-2.08}$$

Distribution of dark and baryonic matter

More extended warm gas

Low frequency upturns

Spectra from Callingham+ 17, which turn up at low frequency

Patchy absorption

THE AUSTRALIAN NATIONAL UNIVERSIT

Effect of dark matter parameters

New simulation

Summary

 GPS and CSS sources are strongly related to AGN feedback in early stages of galaxy evolution

- Low frequency turnover plausibly related to free-free absorption by inhomogeneous ISM with variable opacity
- Sources with steep low frequency spectra are young and rule out Synchrotron Self Absorption

Required central densities compatible with optical studies of star-forming galaxies at z~2-3

 To better replicate the anticorrelation between peak frequency, we need to consider initial distributions of gas, that are more extended

Radio spectrum (both turnover and low frequency slope) provides independent information on ISM density, turbulence, spectrum of density fluctuations and extent - important for understanding feedback - in particular at redshifts ~2-3

 Necessity for more extended distribution of gas emphasises this point

 Patchy absorption leads to multiple peaks in spectrum

 Note: Mean z of O'Dea-Baum GPS/CSS sample ~ 0.97.
 Need to explore densities of ionised gas in sample and find more GPS sources at high z

Dank je!

Interaction of jet with disk of IC5063 reveals powerful jets and significant disruption of star-forming region – consistent with radio morphology and rotation curve

45° Jet-ISM interaction consistent with morphology of NGC1052

