Impact of relativistic jets on the ISM of their host galaxy

Dipanjan Mukherjee Universita di Torino

with Geoff Bicknell Alex Wagner Ralph Sutherland

AGN feedback and galaxy

AGN feedback crucial to match galaxy mass function $\log((dn/d\log M_*)/h^3 Mpc^{-3} dex^{-1})$ Can be in the form of winds no AGN (Quasar mode/Establishment mode) AGN MS (225; 8) MS (225; 8) + AGN(0.35) 10.010.511.5 $\log(\text{Stellar Mass}/h^{-1}M_{\odot})$ -40-2 Blueshifted Region 3 50 2.0-2 2 Edge Shock Z-Axis (kpc) 2.0 2 arcmin = Outer ring 10.5 kpc

- What is the effect of relativistic jets at galactic scales?
- Over what scales? Do the jets affect just a narrow channel or a wider region?
- Outflow? or turbulence? (both)
- How is SFR regulated? Is it ejective (outflows)? Preventive (turbulence)? Passive evolution (strangulation?)? (all?)
- What are the observational signatures of jet-ISM interaction?

We perform simulations (with PLUTO) of 3D relativistic jets from AGNs interacting with a turbulent ISM

- Turbulent ISM: fractal log normal density distribution with Gaussian velocity dispersion (values similar to forster-schreiber et al 2009).
- Different ISM densities, morphology (disk + spherical), jet ower.
- Domain size ~ External gravity (DM+Baryons). Atomic cooling via MAPPINGSV.

Simulation list	Νο	Geometry	Power Log (P)	Density (n _{w0,} in cc)	Inclination	
	1	Spherical	44	400		
Spherical gas distriution	2		44	400		
	3		45	400		
Densities: $nw_0 = 150-2000 \text{ cm}^{-3}$	4		45	150		
Power = 10 ⁴⁴ - 10 ⁴⁶ ergs ⁻¹	5		45	200		
	6		45	400		
	7		45	1000		
	8		46	2000		
Disks	9	Disk	45	100	0	
Densities: nw ₀ = 100-400 cm ⁻³	10		45	200	0	
	11		45	200	20	
Power = 10 ⁴⁵ - 10 ⁴⁶ ergs ⁻¹	12		45	200	45	
Θ = 0, 20, 45, 70	13		45	200	70	
	14		46	100	0	
Gas mass ~ 10 ⁹ -10 ¹⁰ M⊙	15		46	200	0	
	16		46	400	0	
	17	IC 5063	45	200	90	
	18		44	200	90	

The dentist drill in spherical gas distribution

- Jets couple strongly with host's ISM.
- Launch **fast multiphase outflows** but not enough to escape.
- Low power jets are important! Couple more with the ISM, will induce more turbulence and more numerous!
- Gas distribution spherical. Easier to couple. Disks?

Feedback in disk galaxies


```
P<sub>jet</sub>=10<sup>45</sup>ergs<sup>-1</sup>
```

Contours: $\beta = 0.4c, 0.9c$

arXiv:1803.08305

Feedback in disk galaxies

8 arXiv:1803.08305

Inclined jets

- Inclined jets couple more with turbulent disc
 More clouds are lifted off the disc
- The cavity is filled with ablated thermal gas + non-thermal plasma

Inclined jets

Z [kpc]

22 GHz

Inclined jets: IC 5063

2800

2600

Position-velocity

Radius (arcsec)

IC 5063 has a jet going through its disk. Multiwavelength observations (ALMA, HST, VLT) show shock excited outflowing gas

Inclined jets: IC 5063

Mukherjee et al. 2018, arXiv:1801.06875

Inclined jets: IC 5063

- The overall increased dispersion matches ALMA obs, indicates clearing due to expanding bubble.
- Spiky features in the PV is reproduced, indicates jet interaction with clumpy ISM
- P=10⁴⁵ erg s⁻¹ jet has increased dispersion, and non-uniform PV

Mukherjee et al. 2018, arXiv:1801.06875

Quenching via turbulence?

Positive feedback?

Density enhancement due to radiative shocks

$$SFR = \epsilon_{SFR} (\rho d^3 x) / t_{\rm ff}$$
$$t_{\rm ff} = (3\pi/(32G\rho))^{1/2}$$

- Jets with P=10⁴⁶ erg/s show a significant enhancement.
- Inclined jets couple more, higher enhancement.
- Low density ISM show a decline after an initial increase

Star formation surface density?

Star formation surface density?

$$SFR = \epsilon_{SFR} (\rho d^3 x) / t_{\rm ff}$$
$$t_{\rm ff} = (3\pi/(32G\rho))^{1/2}$$

SFRD =
$$\int (\rho/t_{\rm ff}) dz$$
.

Concluding...

Jets launch fast multiphase outflows over several kpc but not enough to escape.

Low power jets are important! Couple more with the ISM, will induce more turbulence and more numerous!

A Jets make **disks turbulent**. **Inclined** jets more.

SFR will be regulated by shocks from the energy bubble and turbulence, rather than mass ejection. Initial SFR burst possible.

Inclined jets IC 5063

Modellog P_{jet} ergs s^{-1} σ_c km s^{-1} n_0 Mass m_{\odot} T_{floor} K r_B kpcSpherical gas distriutionA4450400 6.46×10^9 10^2 1.0 B44100150 2.89×10^9 10^4 1.0 Densities: $nw_0 = 150-2000 \text{ cm}^{-3}$ D45 100 150 2.89×10^9 10^4 1.0 E45 100 150 2.89×10^9 10^4 1.0 Power = $10^{44} - 10^{46} \text{ ergs}^{-1}$ F45 100 300 9.24×10^9 10^2 1.0 Gas mass ~ $10^9-10^{10} M_{\odot}$ H45 250 1000 3.47×10^9 10^2 1.0	Simulation list	Model	log P _{jet} ergs s ⁻¹	Warm clouds						
Spherical gas distriutionergs s^{-1}km s^{-1}cm^{-3} M_{\odot} KkpcA4450400 6.46×10^9 10^2 1.0 B44100150 2.89×10^9 10^4 1.0 C4550400 6.46×10^9 10^2 1.0 C4550400 6.46×10^9 10^2 1.0 D45100150 2.89×10^9 10^4 1.0 E45100200 2.44×10^9 10^2 1.0 F45100300 9.24×10^9 10^4 1.0 Gas mass ~ 10^9 - 10^{10} M $_{\odot}$ H45250 1000 3.47×10^9 10^2 0.4	Simulation inst			$\sigma_{ m c}$	n_0	Mass		$T_{\rm floor}$	r_B	
Spherical gas distriutionA4450400 6.46×10^9 10^2 1.0B44100150 2.89×10^9 10^4 1.0C4550400 6.46×10^9 10^2 1.0C4550400 6.46×10^9 10^2 1.0D45100150 2.89×10^9 10^4 1.0E45100200 2.44×10^9 10^2 1.0Power = $10^{44} - 10^{46}$ ergs ⁻¹ F45100300 9.24×10^9 10^4 1.0Gas mass ~ $10^9 - 10^{10}$ M $_{\odot}$ H452501000 3.47×10^9 10^2 0.4	Spharical gas			km s ⁻¹	cm^{-3}	M_{\odot}	1	Κ	kpc	
distriution B44100150 2.89×10^9 10^4 1.0 Densities: $nw_0 = 150-2000 \text{ cm}^{-3}$ D4550400 6.46×10^9 10^2 1.0 Densities: $nw_0 = 150-2000 \text{ cm}^{-3}$ D45100150 2.89×10^9 10^4 1.0 E45100200 2.44×10^9 10^2 1.0 Power = $10^{44} - 10^{46} \text{ ergs}^{-1}$ F45100 300 9.24×10^9 10^4 1.0 G as mass ~ $10^9 - 10^{10} \text{ M}_{\odot}$ H45250 1000 3.47×10^9 10^2 0.4	Spherical gas	A	44	50	400	6.46 ×	10 ⁹	10 ²	1.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	distriution	В	44	100	150	$2.89 \times$	10 ⁹	10^{4}	1.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		С	45	50	400	$6.46 \times$	10 ⁹	10^{2}	1.0	
Power = $10^{44} - 10^{46} \text{ ergs}^{-1}$ E45100200 2.44×10^9 10^2 1.0 F45100300 9.24×10^9 10^4 1.0 G45250400 6.61×10^9 10^2 1.0 H452501000 3.47×10^9 10^2 0.4	Densities: nw ₀ = 150-2000 cm ⁻³	D	45	100	150	$2.89 \times$	10 ⁹	10^{4}	1.0	
Power = $10^{44} - 10^{46} \text{ ergs}^{-1}$ F45100300 9.24×10^9 10^4 1.0 G45250400 6.61×10^9 10^2 1.0 Gas mass ~ $10^9 - 10^{10} \text{ M}_{\odot}$ H45250 1000 3.47×10^9 10^2 0.4		Е	45	100	200	$2.44 \times$	10 ⁹	10^{2}	1.0	
G45250400 6.61×10^9 10^2 1.0 Gas mass ~ 10^9 - 10^{10} M $_{\odot}$ H45250 1000 3.47×10^9 10^2 0.4	Power = $10^{44} - 10^{46} \text{ ergs}^{-1}$	F	45	100	300	$9.24 \times$	10 ⁹	104	1.0	
Gas mass ~ 10^9-10^{10} M _{\odot} H 45 250 1000 3.47 × 10^9 10 ² 0.4		G	45	250	400	$6.61 \times$	10 ⁹	10^{2}	1.0	
	Gas mass ~ 10^9 - $10^{10} M_{\odot}$	Н	45	250	1000	$3.47 \times$	109	10^{2}	0.4	
I 46 250 1000 3.47×10^9 10^2 0.4		Ι	46	250	1000	$3.47 \times$	10^{9}	10^{2}	0.4	
J 46 250 2000 4.76×10^{10} 10^2 1.0		J	46	250	2000	4.76×10^{-1}	10^{10}	10^{2}	1.0	
K 46 300 $1000 1.20 \times 10^{10} 10^2 0.4$		К	46	300	1000	1.20×10^{-1}	10^{10}	10^{2}	0.4	
					- I		1			
Simulation Power $n_{w0} = \theta_{inc}^{\ o} \chi^c \Gamma^a$ Gas Mass	Dialea	Simulation	Power	n_{w0}	$\theta_{\rm inc}$	χ^{c}	Γ^{a}	Gas N	Gas Mass	
DISKS Label (ergs ⁻¹) (cm ⁻³) ^a (10 ^s M_{\odot})	DISKS	Label	(ergs ⁻¹)	$(\mathrm{cm}^{-3})^{\circ}$	L			(10°A	M⊙)	
Densities: $nw_0 = 100-400 \text{ cm}^{-3}$ A 10^{45} 100 0 10 5 2.05	Densities: nw ₀ = 100-400 cm ⁻³	Α	10^{45}	100	0	10	5	2.05		
Bonomos $1000000000000000000000000000000000000$		В	10^{45}	200	0	10	5	5.71		
Power – 10^{45} – 10^{46} ergs ⁻¹ C 10^{45} 200 20 10 5 5.71	Power = 10 ⁴⁵ - 10 ⁴⁶ ergs ⁻¹	С	10^{45}	200	20	10	5	5.71		
D 10^{45} 200 45 10 5 5.71		D	10^{45}	200	45	10	5	5.71		
$\Theta = 0.20.45.70$ E 10^{45} 200 70 10 5 5.71	$\Theta = 0, 20, 45, 70$	Е	10^{45}	200	70	10	5	5.7	5.71	
Gas mass $\approx 1.09-1.010$ M _o F 10^{46} 100 0 80 10 2.05	$C_{22} = 0, 20, 10, 70$	F	10^{46}	100	0	80	10	2.05		
$Gas mass ^{10} 10^{40} 10^{46} 200 0 80 10 5.71$	Gas 111ass ~ 10°-101° IVIO	G	10^{46}	200	0	80	10	5.7	1	
H 10^{46} 400 0 80 10 20.68		Η	10^{46}	400	0	80	10	20.6	68	

Wide-angled sub-relativistic outflow

• Launch vertical sub-relativistic wide-angles outflow along the minor axis (chimney effect)