

Intermittent jets in groups and clusters

Patrick Yates, Stas Shabala, Martin Krause

The questions

- How important is environment to observable properties of radio lobes on scales of 10s and 100s of kpc?
 - Radio morphology environment relation
 - Dynamical models predict a strong scaling of luminosity with gas density
- How does jet intermittency affect observable properties and feedback efficiency?
 - Does how (not just how much) energy is supplied matter?
- 2D axisymmetric simulations of non-relativistic, initially conical jets, using the PLUTO code
- Same total energy and jet power, supplied in different ways, to different environments

Simulation setup

Environment	# outbursts	Code
Poor Group (3 x 10 ¹² M _{sun})	1	M12.5-M25-n1
	2	M12.5-M25-n2
	3	M12.5-M25-n3
	4	M12.5-M25-n4
Cluster (3 x 10 ¹⁴ M _{sun})	1	M14.5-M25-n1
	2	M14.5-M25-n2
	3	M14.5-M25-n3
	4	M14.5-M25-n4

Inject the same energy, at the same *time-averaged* rate:

- Into different environments (cluster vs group)
- Using different number of episodes

Constant parameters:

- Jet power: 10³⁷ W, representative of a weak FR-II jet
- Total active time: 40 Myr
- Total quiescent time: 160 Myr

How important is intermittency of feedback, to observables and feedback efficiency?

Environments

Environment	# outbursts	Code
Poor group (3 x 10 ¹² M _{sun})	1	M12.5-M25-n1
	2	M12.5-M25-n2
	3	M12.5-M25-n3
	4	M12.5-M25-n4
Cluster (3 x 10 ¹⁴ M _{sun})	1	M14.5-M25-n1
	2	M14.5-M25-n2
	3	M14.5-M25-n3
	4	M14.5-M25-n4

Isothermal hydrostatic equilibrium vs King profiles discuss isothermal NFW, but King profile results are qualitatively similar

- Mach=25 for all simulations
- FR-II radio galaxies
- Initially conical jet is collimated by pressure of the external medium

Role of environment

Surface brightness

Single jet in cluster, shifted to z=0.05 (1kpc ~ 1 arcsec)

Observed at 1.4 GHz with beam FWHM = 5 arcsec Contours at:

> 0.01, 0.1 mJy/beam (dashed) 1, 10 mJy/beam (solid)

? Would this be identified as an FR-II if the source was asymmetric?

1, 10 mJy/beam (solid)

Remnant detectability depends on environment

Feedback efficiency

Fraction of jet energy coupling to the gas depends on environment

- 50% efficiency in clusters (cf Hardcastle & Krause 2013, 2014)
- more efficient in poor group

Lowest entropy gas is removed – as needed in galaxy formation models

Pre-conditioning of the ICM by earlier outbursts

Coupling efficiency ~ 50% for n=1 and n=4 outbursts

Intermittency more important in group

- Less kinetic and thermal energy imparted to gas in n=4 simulation

- Cluster simulation dominated by gravitational potential energy

Size-luminosity evolution

Size-luminosity evolution

Lobe length (kpc)

UNIVERSITY of TASMANIA

1, 10 mJy/beam (solid)

Conclusions

- 2D axisymmetric simulations of non-relativistic, initially conical jets
- Same total energy and jet power, supplied in different ways
 - Cluster vs poor group environment
 - 1 x 40 Myr episode vs 4 x 10 Myr episodes
 - Total evolution over 200 Myr
- Environment is important
 - Cluster radio galaxies are brighter, and hence easier to detect
 - Cluster jets are collimated earlier by external pressure
 - Group feedback efficiency is higher
- Intermittency is important
 - Preconditioned IGM/ICM affects jet propagation
 - Coupling efficiency changes by ~20%
- Need to consider effects of environment and intermittency in current and future radio continuum surveys

Patrick Yates