

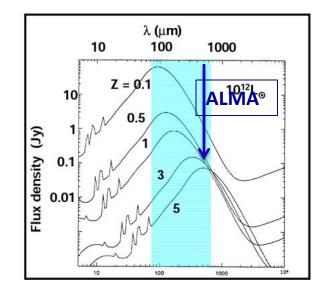
FIR/Submm/MMm telescopes To the JCMT and beyond ALMA; In historic perspective

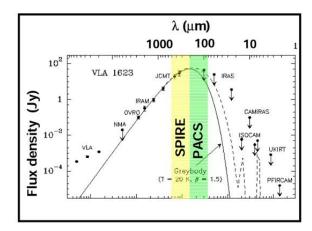
> Thijs de Graauw ESO emeritus

Introduction

- (F)IR/Submm/Mm science objectives strongly connected
- Development of FIR/submm/mm observatory capabilities has extra dimension: altitude.
- Evolution of *Space missions* and *Ground-based Observatories* are entangled; also development of *detection* and *receiver* systems and other technologies.

Topics addressed:


- Introduction
- (F)IR/Submm/mm Space Missions
- Single Dish observatories
- Submm/mm Interferometers >>>>Submm/mm Hubble"

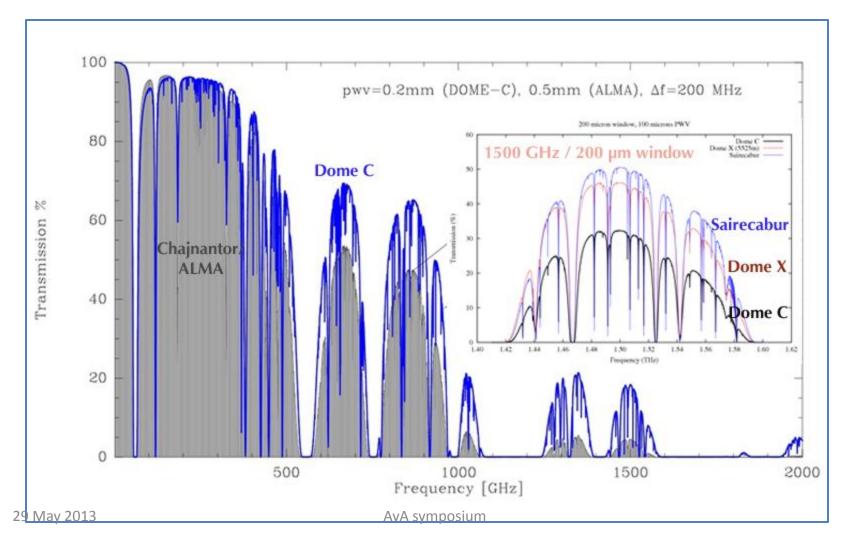


Science in the Mm/Submm Range addresses the Cool Universe

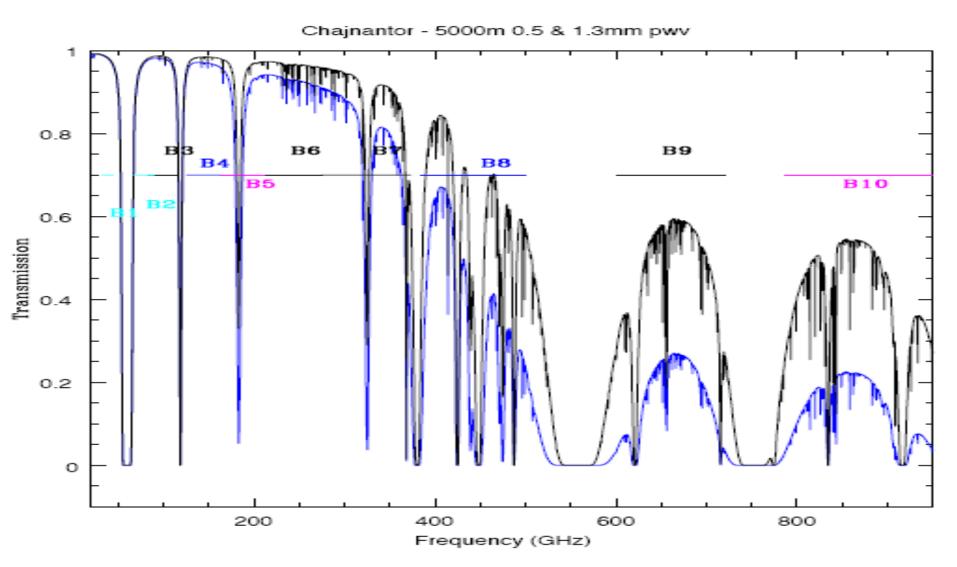
- Spectral coverage for:

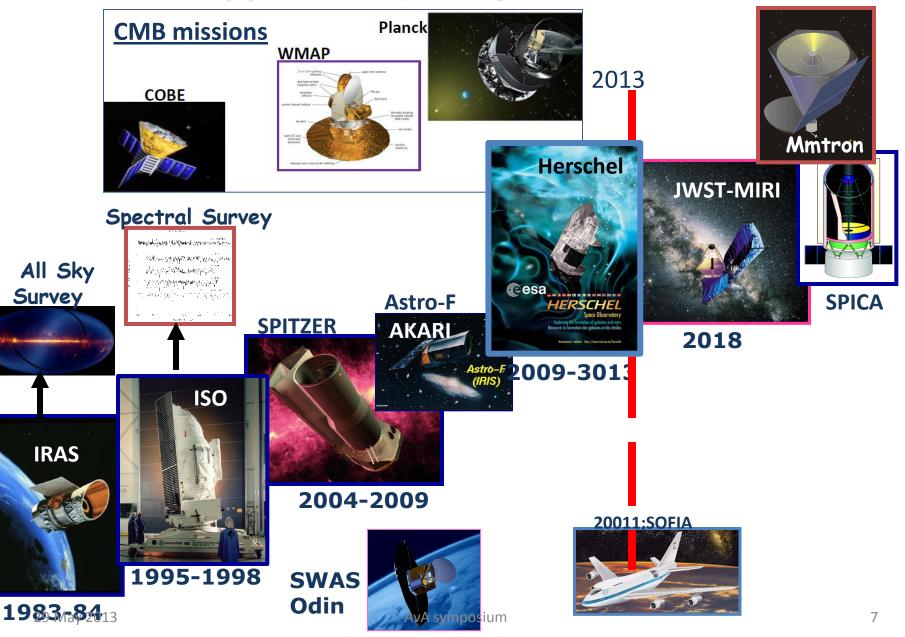
 Black-bodies 5-100 K
 continuum radiation
 dust grains (re-)radiating
 Gasses excitation 10-few100 K
 Atomic/ionic lines
 Molecular Universe
 a.o. water lines, CII, etc.
 - IR gal & ISM SED peaks, out to high Z and Cosmic Background!
- Emphasis:
 - Formation and evolution of galaxies
 - Formation of stars and planets
 - ISM physics & chemistry
 - Solar system bodies

≻170 Molecules in Space


➤Table not complete

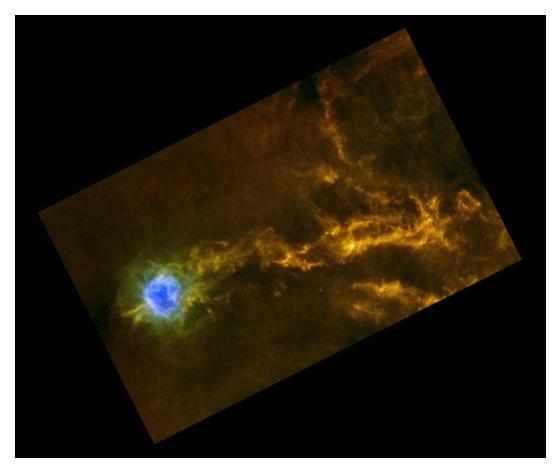
Molecules in the Interstellar Medium or Circumstellar Shells (160 as of 08/2011)


2 atoms 37	3 atoms 37	4 atoms 24	5 atoms 18	6 atoms 16	7 atoms 9	8 atoms 10	9 atoms 9	10 atoms 4	11 atoms 3	12 atoms 3	>12 atoms
H2	C3*	e-C3H	C5*	C5H	C6H	CH3C3N	CH3C4H	CH3C5N	HC9N	C6H6*	HC11N
AlF	C2H	1-C3H	C4H	1-H2C4	CH2CHCN	HC(O)OCH3	CH3CH2CN	(CH3)2CO	CH3C6H	C2H5OCH3	C60*
AIC1	C2O	C3N	C4Si	C2H4*	CH3C2H	CH3COOH	(CH3)2O	(CH2OH)2	C2H5OCHO	n-C3H7CN	C70*
C2**	C2S	C30	l-C3H2	CH3CN	HC5N	C7H	CH3CH2OH	CH3CH2CHO			
CH	CH2	C3S	e-C3H2	CH3NC	CH3CHO	H2C6	HC7N				
CH+	HCN	C2H2*	H2CCN	CH3OH	CH3NH2	CH2OHCHO	C8H				
CN	HCO	NH3	CH4*	CH3SH	e-C2H4O	1-HC6H*	CH3C(O)NH2				
CO	HCO+	HCCN	HC3N	HC3NH+	H2CCHOH	CH2CHCHO	C8H-				
CO+	HCS+	HCNH+	HC2NC	HC2CHO	C6H-	CH2CCHCN	C3H6				
CP	HOC+	HNCO	HCOOH	NH2CHO		H2NCH2CN					
SiC	H2O	HNCS	H2CNH	C5N							
HC1	H2S	HOCO+	H2C2O	l-HC4H*							
KC1	HNC	H2CO	H2NCN	1-HC4N							
NH	HNO	H2CN	HNC3	e-H2C3O							
NO	MgCN	H2CS	SiH4*	H2CCNH (?)							
NS	MgNC	H3O+	H2COH+	C5N-							
NaCl	N2H+	e-SiC3	C4H-								
OH	N2O	CH3*	HC(O)CN								
PN	NaCN	C3N-									
SO	OCS	PH3 ?									
SO+	SO2	HCNO									
SiN	c-SiC2	HOCN									
SiO	CO2*	HSCN									
SiS	NH2	H2O2									
CS	H3+*										
HF	H2D+,										
	HD2+										
HD	SiCN										
FeO	AINC										
O2	SiNC										
CF+	HCP										
SiH	CCP										
PO	AlOH										
AlO	H2O+										
OH+	H2Cl+										
CN-	KCN										L
SH+	FeCN										


Altitude (Space) of the site is an important criterium

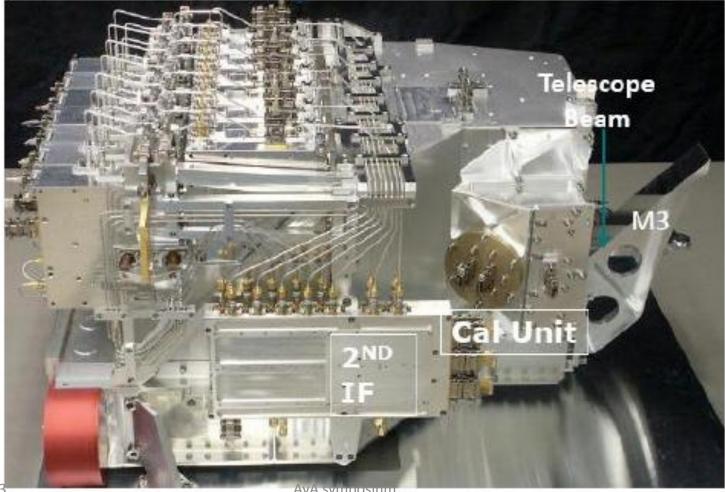
ALMA Bands at 5000m

(F)IR/Submm/mm Space Missions

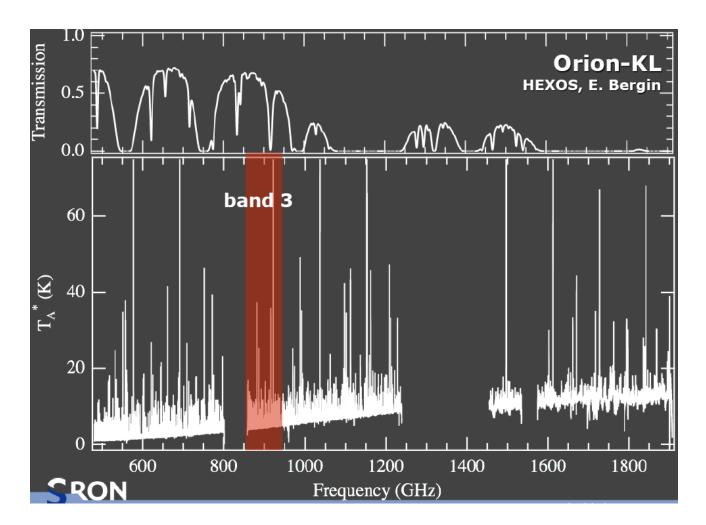


Start of the FIRST=Herschel project: Noordwijkerhout 1982

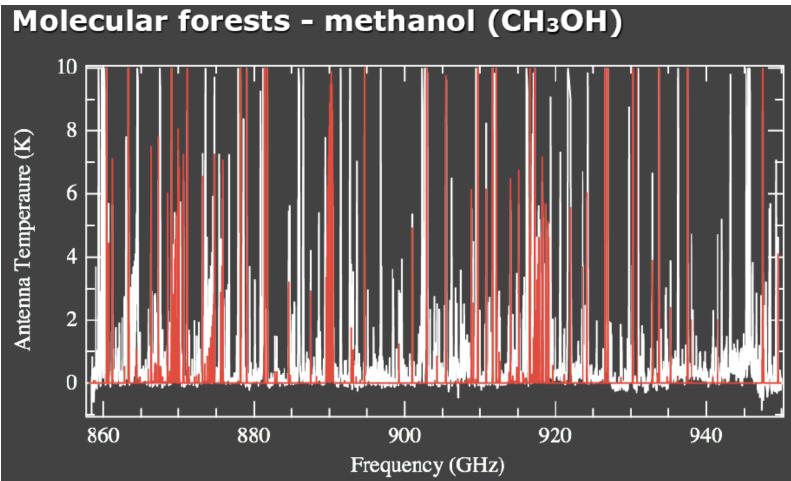
Herschel Results on Star Formation: Dense filaments of gas in IC5146


Dense filaments of gas in the IC5146 interstellar cloud. This image was taken by ESA's Herschel space observatory at infrared wavelengths 70, 250 and 500 microns. Stars are forming along these filaments.

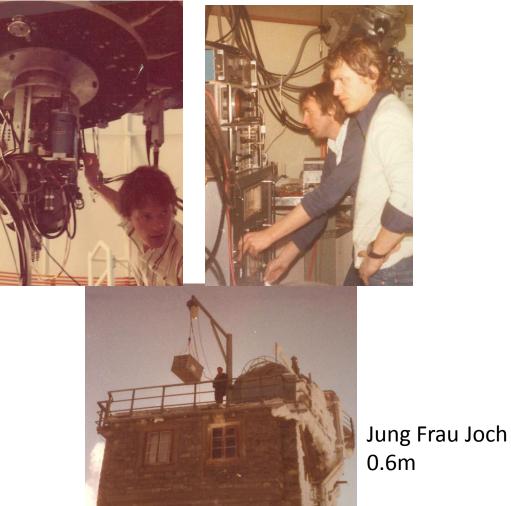
Copyright ESA/Herschel/SPIRE/PACS/D. Arzoumanian (CEA Saclay) for the "Gould Belt survey" Key Programme Consortium.

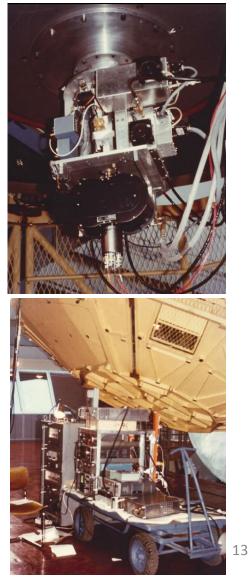

Herschel-HIFI design:

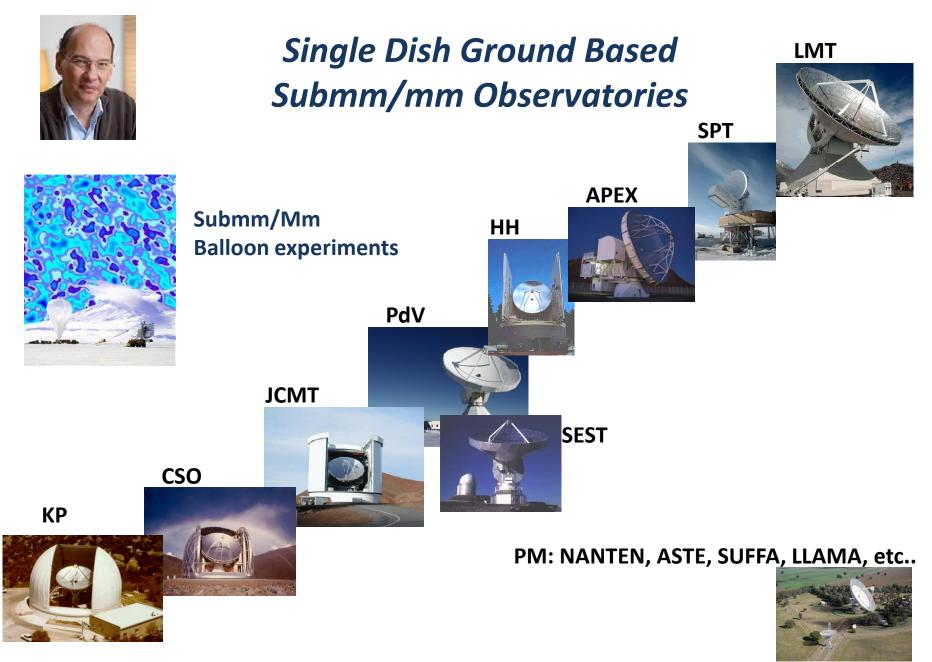
Wavelength Range: 480-1250, 1410-1910 GHz Bandwidth: 4 Ghz wide; Resolution: < 100m/s



HIFI results-1:Orion scan

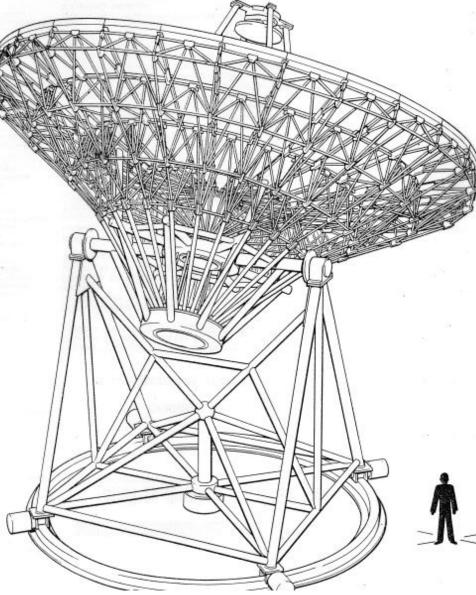

HIFI results-1:Orion scan




Before there was a JCMT: "Pearls for the Swines" period

AvA symposium

ESO 3.6m



JCMT: UK/NL/(Ca)

JCMT with(out) receiver cabin

JCMT Receiver Working group visit to Genius (IJmuiden), Arnold as member.

AvA symposium

Submm/mm Interferometres

IRAM PdB (NOEMA)

6 (12) antennas, each 15 m in diameter

ATCA : 6 antennas each 22 m in diameter

SMA 8 antennas each 6 meters in diameter

CARMA

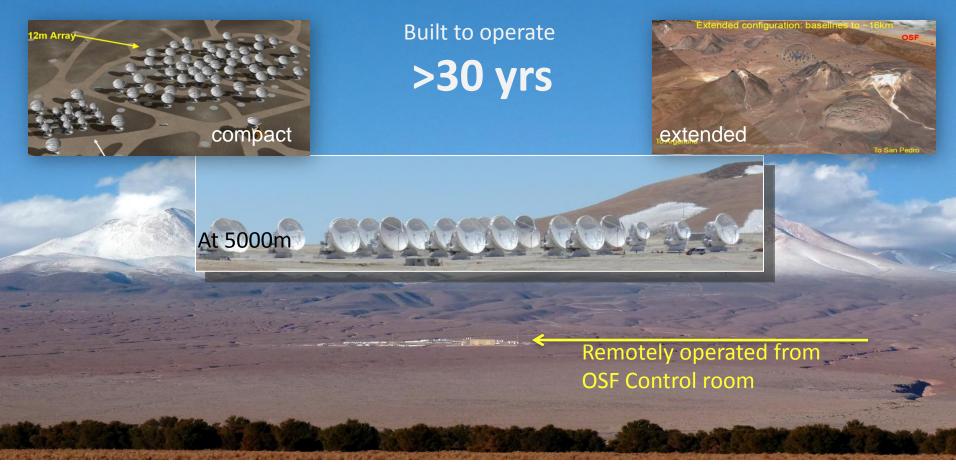
- 6 Antennas each 10.4 m. in diameter. (OVRO)
- 9 Antennas each 6.1 m. (Hat Creek)
- 8 Antennas each 3.5 m. in diameter. (SZA)

NRO: 6 antennas each 10 metres in diameter

AvA symposium

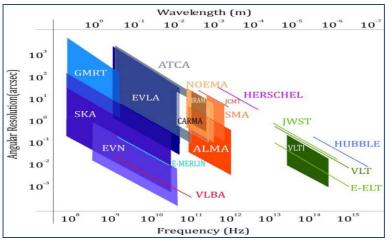
Interferometer Key Parameters

Table 1 Key parameter of existing and future millimeter/submillimeter interferometers.


Altitude (m)	N _{ANT}	Diameter (m)	Coll.Area (m ²)
2550	6	15	1060
2200	15	6/10	772
4080	10	6/10/15	481
1340	6	10	471
	2550 2200 4080	2550 6 2200 15 4080 10	2550 6 15 2200 15 6/10 4080 10 6/10/15

IRAM NOEMA	2550	12	15	2120
ALMA	5060	50	12	5652

The ultimate Submm/mm interferometer: ALMA?

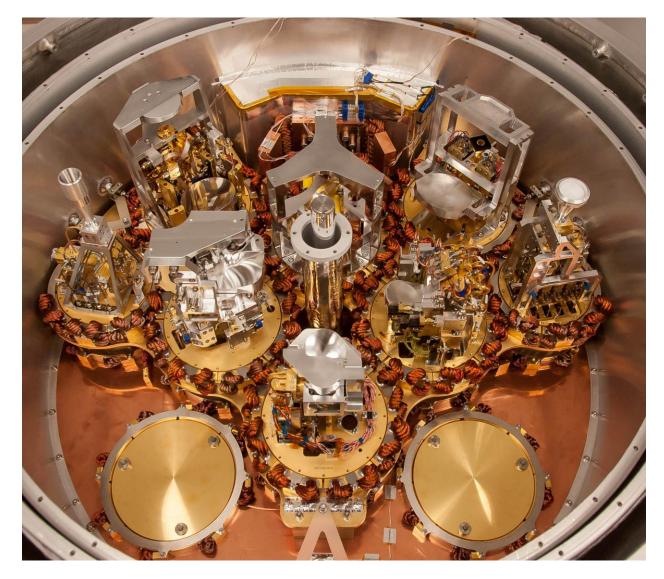

An array of **66 antennasusing** <u>aperture</u> s, as a "zoom telescope" over the <u>entire</u> accessible mm/submm wavelength

ALMA Science Capabilities:

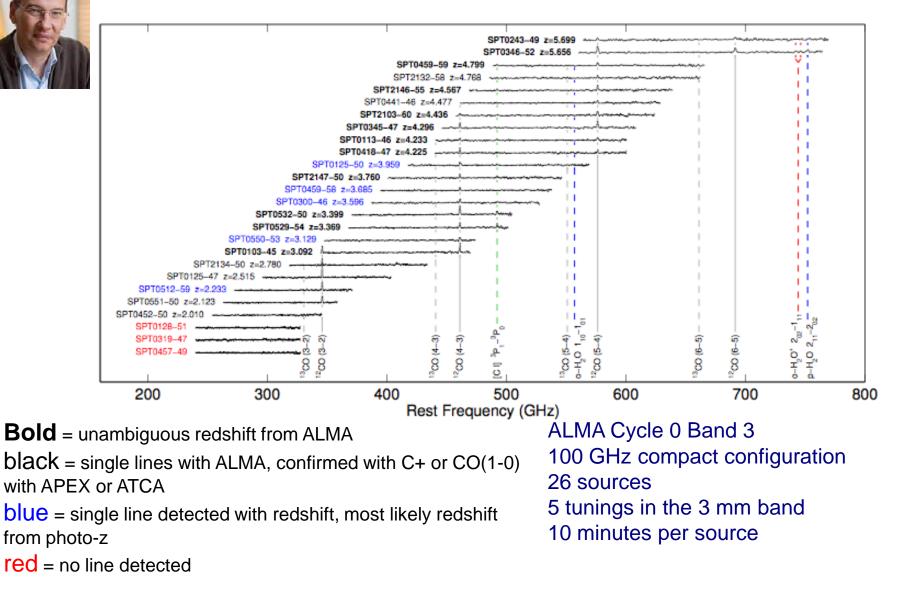
Angular Resolution

- ~8 times better that Hubble ST
- ~10-100 times better than current mm interferometers

Spectral resolution sub-km/s

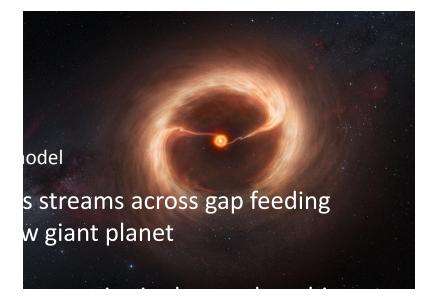

(>10 times better than Hubble GHRS)

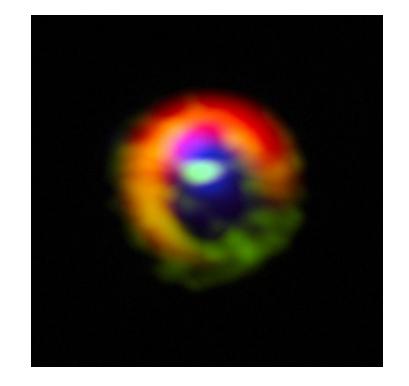
Sensitivity:


- large increase:
 - 10-100 times from:
 - 7000m² collecting area
 - -State of the art receivers
- Coverage entire submm/mm spectral range

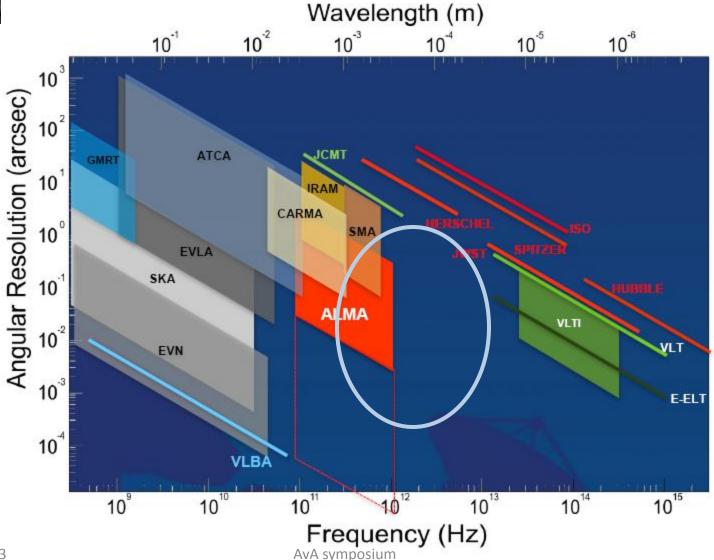
ALMA Cryostat with 8 bands

First spectroscopic redshift survey with ALMA

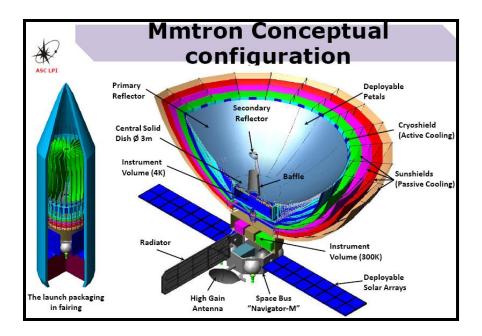

AvA symposium


3

Vieira, Marrone, Chapman, DeBreuck, Hezaveh, Weiss, et al. Nature in press


ALMA first results: images of disks with cavities


The FIR Angular Resolution Capability Gap



The Future Single Dishes

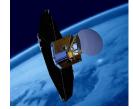
CCAT: 25 m in diametre

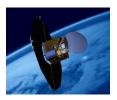
Scientific requirements for Instrumentation

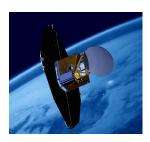
Required detectors NEP:	≤ 10 ⁻¹⁹ W/√Hz
Sensitive to polarization	
Requirements for the Imaging Specifications:	
Wavelength coverage: Spatial resolution: Field of view:	20 – 3000 μm (goal) ≈ 5"@200 μm ≈ 6'@300 μm
Requirements for the Spectroscopic Specifications:	
Low resolution: Wavelength coverage:	λ/Δλ ≈ 3 20 – 3000 μm (goal)
Medium resolution: Wavelength coverage:	λ/Δλ ≈ 1000 20 – 3000 μm (goal)
High resolution: Wavelength coverage:	λ/Δλ ≥ 100000 50 – 500 μm (goal)
Requirements for the Interferometric Specifications :	
Wavelength coverage:	300 µm – 17 mm (goal)

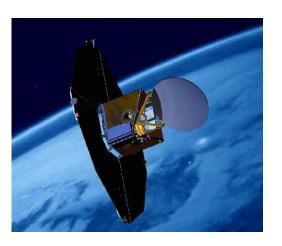
Resolution :

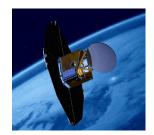
Noise temperature:




 $\begin{array}{l} 300 \ \mu m-17 \ mm \mbox{ (goal)} \\ \lambda/\Delta\lambda \geq 100000 \\ \mbox{ lowest available} \end{array}$

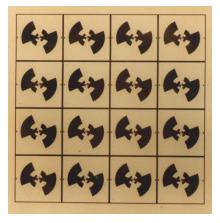

<u>ESPRIT: Exploratory SPace submm</u> <u>Radio Interferometric Telescope</u> <u>Hubble resolution in the FIR</u>





<u>Th. de Graauw, J. Cernicharo, A. Bos,</u> J. Bregman, L.Darcio, J-W den Herder, A. Gunst, <u>F. Helmich, P. Maat, J, Noordam, A.</u> <u>Quirrenbach, P. Roelfsema, L. Venema, P.</u> <u>Wesselius, W. Wild, J. Martin-Pintado,</u> <u>P. Yaqoubov, et al.</u>

Arnold and SRON: personal liaison for ASTRON Arnold's Submm Mixer array dream:


- Cross-guide couplers (fast and practical)
- One eye on QO designs: LogPer
- Effort was aborted

Present status on receiver arrays:

- 8 pixels 460-498GHz; 8 for 800-920; KOSMA
- 7 pixels 660-690GHz; 7 for 800-880; MPIfRA/Champ+ In development:

128 pixel for 460-500 GHz; KOSMA/Caltech/JPL; CCAT Balanced mixers!!

PM: ALMA-MADE discussion on ASTRON role in ALMA front-end fabrication (Astro-Tech)

Concluding

- ASTRON (Dwingeloo) always extremely hospital for Submm development teams in the Netherlands: Utrecht and Groningen.
- In exchange of ideas, equipment and sharing workloads
- Team of Jean with Arnold and Bert

Arnold, Many Thanks and Best Wishes for the Future