Experiences With EVLA Data

CALIM 2010, Dwingeloo, Aug. 24^{th.} 2010

S. Bhatnagar NRAO

High sensitivity imaging

- Sensitivity $\propto \frac{N_{ant}A_{ant}\sqrt{N_{t}\tau N_{chan}}\Delta v}{T}$
- Higher sensitivity is achieved using larger collecting area ($\propto N_{ant}$), wider band-widths ($N_{channels}$) and longer integrations in time (N_{t})
 - Data volume $\propto N_{ant}^2 N_{channels} N_t$
- Implications for high dynamic range imaging
 - Wider field imaging required \rightarrow finer sampling in time and frequency
 - $N_{channels} = 1-10GHz/MHz$ and $N_{t} = 10hr/(1-10sec)$
 - Wider range of angles on the sky (==> Direction Dependence)
 - Smaller scale variations over larger parameters space to be accounted for
 - Algorithm efficiency remains a critical parameter
 - 10-100x increase in the number of samples to achieve the required sensitivities

The EVLA

- 27-antenna array: 25m diameter, Az-El mount
- Continuous frequency coverage from 1-50 GHz in 8 bands
- Bandwidth ratio $(n_{high} : n_{low}) = 2:1$
- Instantaneous bandwidth: 8 GHz (currently 2x1GHz)
- WIDAR Correlator: Upto 16K channels
- Data rate: Currently ~12 Mbytes/s (512 channels)
 350 GB/per typical observation (6hr)
- Sensitivity: Thermal noise ~1 microJy/beam in ~1 hr.
 → Dynamic range of 10⁶ for a 1 Jy point source

Synthesis Imaging

• Measurement Equation

$$W_{ij}^{Obs}(v) = M_{ij}(v,t) W_{ij} \int M_{ij}^{S}(s,v,t) I(s,v) e^{2\pi \iota(b_{ij},s)} ds$$

 $M_{ij}(v,t) = J_i(v,t) \otimes J_j^*(v,t)$:Direction <u>independent</u> gains $M_{ij}^s(s,v,t) = J_i(s,v,t) \otimes J_j^*(s,v,t)$:Direction <u>dependent</u> (DD) gains

- Requirements: Full beam, full band, full Stokes imaging
 - Wide-band, narrow field: Ignore $M_{ij}^{s}(s, v, t)$
 - Narrow-band, wide-field: Ignore frequency dependence of *I*
 - Wide-band, wide-field: A-Projection + MS-MFS
 - High dynamic range: All the above + DD solvers
 - Time dependent pointing errors, PB shape change, etc.

Combined RHS determines the "time constant" over which averaging will help

Examples of DD effects

Time and DD Primary Beam: EVLA

Ionospheric Phase Screen

Examples of DD effects

Time and DD Primary Beam: LWA

Ionospheric Phase Screen

Range of imaging challenges

Field with compact sources filling the FoV

Compact + extended emission filling the FoV

Used mostly auto-flagging + some manual flagging

Dominant DD Effects

- Time varying PB effects
 - <u>All frequencies</u>: Rotation with Parallactic Angle for El-Az mount antennas (GMRT, EVLA, ALMA)
 - <u>All telescopes</u>: Pointing errors, structural deformation
 - Projection effects (Aperture Array elements)
 - Frequency and polarization dependence (most telescopes)
 - Heterogeneous antenna arrays
- Algorithm development approach taken
 - Algorithm R&D (SNR per DoF, error propagation, computing requirements,...)
 - Proof-of-concept tests with realistic simulations
 - Apply to real data to test computing and numerical performance

Parametrized Measurement Equation

- Need more sophisticated parametrization of the ME
 - Better parametrization of the J_i , J_i^s and the Sky (I^M)
 - Solver for the (unknown) parameters
 - Forward and reverse transform that account for the DD terms
 - Efficient run-time implementation
- Useful parametrization:
 - Which models the effects well and with minimum DoF
 - For which efficient solvers can be implemented
 - Which optimally utilizes the available SNR
- Noise on the solved parameters:
 - Calculate Covariance matrix for $V_{ij}-V_{ij}^{M}(p_{k},I^{M})=\sigma_{ij}$

$$\sigma(p) = \left[\frac{2k_b T_{sys}}{\eta_a A \sqrt{N_{ant} v_{corr} \tau_{corr}} \sqrt{N_{SolSamp}}}\right] \frac{1}{S}$$

where
$$S = \int \frac{\partial E_i(s, p)}{\partial s} E_j^*(s, p) I^M(s) e^{2\pi \iota s. b_{ij}} ds$$

Deconvolution: Parametrization of the emission

- Scale-less deconvolution algorithms:
 - $I^{M} = \sum_{k} A_{k} \delta(x x_{k})$:Treat each pixel as an independent DoF
 - CLEAN (and its variants), MEM (and its variants)

S. Bhatnagar: CALIM 2010, Dwingeloo, Aug. 24th 2010

Deconvolution: Parametrization of the emission

- Scale-sensitive deconvolution algorithms:
 - $I^{M} = \sum_{k} A_{k} f(Scale, Position)$:Decompose the image in a scalesensitive basis
 - Asp-Clean (A&A, 747, 2004 (astro-ph/0407225), MS-Clean (IEEE JSPSP, Vol. 2, No. 5, 2008)

Component Model

Restored Model

Residuals

Time varying DD gains due to PB

Wide-band PB effects

Frequency dependence of the PB is a first order effect for wide-band observations

• Is it M(s, v) or is it I(s, v)?

 Fundamental separation: Include PB as part of the measurement process (include its effect as part of forward and reverse transforms)

$$V(b_{ij}) = \int M^{S}_{ij} I(s) e^{2\pi \iota \left(b_{ij},s\right)} ds$$

Full beam imaging

- Limits due to the rotation of asymmetric PB
 - Max. temporal gain variations @ ~10% point
 - DR limit: few X 10⁴:1

- Limits due to antenna pointing errors
 - In-beam error signal max. @ 50% point
 - DR limit: few X 10⁴:1
 - Limits for mosaicking would be worse
 - Significant flux at half-power point
 - Significant flux in the side-lobes for most pointing

The A-Projection algorithm

 $V^{o}(u, v, w) = V^{M}(u, v) * G(u, v; Time, Poln.)$

- Modified forward and reverse transforms:
 - No assumption about sky properties
 - Spatial, time, frequency and polarization dependence naturally accounted for
 - Done at approximately FFT speed

Model for EVLA aperture illumination (real part)

One element of the Sky-Jones (Jones Matrix per pixel)

- Combining with W-Projection or image plane part of the various deconvolution algorithms is straight forward (algorithm complexity is lower)
- Efficient solvers to solve for more precise parametrized models (Pointing SelfCal and its extensions)

A-Projection algorithm, A&A 2008

A-Projection algorithm: Simulations

Goal: Full-field, full-polarization imaging at full-sensitivity

A-Projection: Bhatnagar et al., A&A,487, 2008

EVLA L-Band Stokes-I: Before correction

- 3C147 field at L-Band with the EVLA
- Only 12 antennas used
- Bandwidth: 128 MHz
- ~7 hr. integration
- Dynamic range: ~700,000:1

EVLA L-Band Stokes-I: After correction

- 3C147 field at L-Band with the EVLA
- Only 12 antennas used
- Bandwidth: 128 MHz
- ~7 hr. integration
- Dynamic range: ~700,000:1

EVLA L-Band Stokes-V: Before correction

Is it M(s, Poln)? Or is it I(s, Poln)?

EVLA L-Band Stokes-I: After correction

Use physical model for the Stokes-V pattern:

Contours: Stokes-I power pattern Colour: Stokes-V power pattern

Wide band imaging with the EVLA

Wide band imaging with the EVLA

3C147: Residual errors in full field

DD SelfCal algorithm: Simulations

DD SelfCal algorithm: EVLA Data

DD SelfCal algorithm: EVLA Data

- El-Az mount antennas
- Polarization squint due to off-axis feeds
 - The R- and L-beam patterns have a pointing error of +/- ~0.06 $\frac{\lambda}{D}$
- DoF used: 2 per antenna
 SNR available for more DoF to model the PB shape

$$\sigma(p) = \left[\frac{2k_b T_{sys}}{\eta_a A \sqrt{N_{ant} \nu_{corr} \tau_{corr} \sqrt{N_{SolSamp}}}}\right] \frac{1}{S}$$

where
$$S = \int \frac{\partial E_i(s,p)}{\partial s} E_j^*(s,p) I^M(s) e^{2\pi \iota s. b_{ij}} ds$$

- EVLA polarization squint solved as pointing error (optical pointing error).
- Squint would be symmetric about the origin in the absence of antenna servo pointing errors.
- Pointing errors for various antennas detected in the range 1-7 arcmin.
- Pointing errors confirmed independently via the EVLA online system.

[paper in preparation]

Computing load

I/O load

- Near future data volume (0-1 years)
 - Recent data with the EVLA: 100-500 GB
- Next 5 years
 - 100X increase (in volume and effective I/O)
- Non-streaming data processing
 - Expect 20-50 passes through the data (flagging + calibration + imaging)
 - Effective data i/o: few TB
 - Exploit data parallelism
 - Distribute normal equations (SPMD paradigm looks promising)
 - Deploy computationally efficient algorithms ('P' of SPMD) on a cluster

Computing challenges

- Calibration of direction dependent terms
 - As expensive as imaging
- Significant increase in computing for wide-field wide-band imaging
 - E.g. convolution kernels are larger (up to 50x50 for single facet EVLA A-array, L-band imaging)
 - E.g. Multiple terms for modeling sky and aperture for wide-band widths
- Terabyte Initiative: 4K x 4K x 512 x 1Pol tests using 200 GB data set
 - Timing
 - Simple flagging : 1h
 - Calibration (G-Jones) : 2h15m
 - Calibration (B-Jones) : 2h35m
 - Correction : 2h
 - Imaging : 20h
 - Compute : I/O ratio : 2:3

Parallelization: Initial results

- Continuum imaging: (No PB-correction or MFS)
 - Requires inter-node I/O (Distribution of normal equations)
 - Dominated by data I/O
 - 1024 x 1024 imaging: (Traditional CS-Clean; 5 major cycles)
 - 1-node run-time : 9hr
 - 16-node run-time :
- 70min (can be reduced up to 50%)
 - : 60min (MS-Clean) (residual CPU-power available for projection algorithms)
 - Imaging deconvolution is most expensive step
 - DD Calibration as expensive as a deconvolution major-cycle
 - CPU bound (a good thing!)

[Golap, Robnett, Bhatnagar]

Parallelization: System Design

- Matching data access and in-memory grid access patterns is critical
- Optimal data access pattern for imaging and calibration are in conflict
 - Freq-Time ordered data optimal for imaging
 - Time-ordered data optimal for calibration
- SS deconvolution + MFS might make FLOPS per I/O higher: A good thing!
- Production Cluster
 - 32 nodes, 2x4 cores, 12 GB RAM, InfiniBand
 - Data served via a Luster FS
 - Measured I/O throughput: 800-900 MB/s
 - Multiple processes per node gets I/O limited
 - I/O handler separated from compute processes

General comments

- Algorithms with higher Compute-to-I/O ratio
 - Moor's law helps
- Pointing SelfCal and MS-MFS solutions demonstrate the need for minimizing the DoF per SNR (?)
- Exact solutions in most cases is a mathematical impossibility
 - Iterative solvers are here to stay: Image deconvolution, calibration
 - Baseline based quantities are either due to sky or indistinguishable from noise.
 - Modeling of calibration terms is fundamentally antenna-based
- Data rate increasing at a faster rate than i/o technology
 - Moor's law does not help!
 - Moving 100s of GB EVLA data can take up to a weak
 - More time spent in i/o-waits than in computing
 - Need for robust algorithms for automated processing that also benefit from and can be easily parallelized

Need for robust pipeline heuristic

