
MeerKAT Online Processing

Simon Ratcliffe

CALIM 2010

Overview Online System SPEAD WrapupSignal Displays

MeerKAT Signal Path

Overview Online System SPEAD WrapupSignal Displays

Online System

 The online system receives raw visibilities from the
correlator at a sufficiently high dump rate to facilitate
the following (currently 10 Hz):

 Continuous Tsys calculation

 RFI Flagging

 Baseline dependent time averaging

 The resultant visiblities + cal data + flagging are written
to disk in the medium term archive.

 A stream of output data is also produced for real-time
downstream consumers, such as the quicklook imager
and data spigot users.

Overview Online System SPEAD WrapupSignal Displays

Flagging

• On QA Return

– Bad antenna / polarisation

– Timing synch

– Etc...

• RFI Flagging

– Simple thresholding

– Known sky pollutants (GEO, LEO, DME, etc...)

– Recursive fading-memory polynomial filters (we
have an IBM System-S implementation, porting
to GPUs soon)

Overview Online System SPEAD WrapupSignal Displays

 Simple bimodal averaging scheme can easily
give a factor 4 reduction in overall data rates
without any increase in time-average smearing.

Baseline Dependent Time Averaging

• Hot spots can be preserved at higher dump rates to
help with redundancy.

Overview Online System SPEAD WrapupSignal Displays

UV Density for 8 hour track of Orion A – 80 Dish Configuration

Overview Online System SPEAD WrapupSignal Displays

 Correlator output is split into a number of sub
bands, each of which is processed in parallel.

 The split depends in the individual capacity of
each element of the parallel system.

 With our current technology, 1024 channels can
be processed in a single element (with 10 Hz
correlator dump) – limited by 10 GbE
throughput.

 Parallel HDF5 output file allows multiple
simultaneous writes from each system element
and provides an on disk corner turn.

Online System - Detail

Overview Online System SPEAD WrapupSignal Displays

Online System - Detail

Overview Online System SPEAD WrapupSignal Displays

The building block

=

Overview Online System SPEAD WrapupSignal Displays

 A single GPU is a good match for current performance
networking and has the I/O to keep up with data from both 10
GbE and QDR infiniband.

 Still riding good performance curves and HPC support is getting
better all the time.

 Two major players (Nvidia and ATI) can help with vendor lock in
(as long as you stick with OpenCL and not CUDA).

 The ecosystem of tools, particularly debuggers is rapidly
improving (see Nvidia Nsight for an example of good these are
getting)

 IRQ affinity under linux is helping to support multiple GPUs and
NICs per machine.

 New developments (AMD Fusion almost a reality) will bring the
GPU ever closer to the CPU memory bus, improving throughput
and interoperability.

Why GPUs

Overview Online System SPEAD WrapupSignal Displays

CUDA – Hello World
Kernel – Spawned and executed per GPU thread

CPU code – C with CUDA markup

Python wrapper – Do things the easy way :)

Overview Online System SPEAD WrapupSignal Displays

Online System – On the GPU

Overview Online System SPEAD WrapupSignal Displays

• With modest current technology (Nvidia GTX

260, Core i7-940) we can fairly easily max out a

10 GbE port (around 8.6 Gbps).

• Decode of the streaming protocol can be done

in CPU or GPU depending on first stage

processing to be performed.

• MeerKAT online elements will leave around 3

GB of RAM and of order 2 Tflops processing

power per block of channels in the GPU.

Online System - Performance

Overview Online System SPEAD WrapupSignal Displays

The Glue....

Overview Online System SPEAD WrapupSignal Displays

 Streaming Protocol for Exchanging Astronomical
Data

 Joint development between SKA South Africa and
UC Berkeley as part of the CASPER collaboration.

 Designed to handle a wide variety of astronomical
data including voltage, visibility, and sensor data.

 Standard output data format for ROACH based
correlators.

 Aim is to have a single coherent protocol
throughout the entire processing chain (i.e. from
digitisation to imaging)

SPEAD

Overview Online System SPEAD WrapupSignal Displays

 There are may formats out there, so why contribute to the
malaise by developing another one ?

– A number of formats pretend to be self describing but still require
some a priori information (e.g VDIF)

– We want to single protocol that bridges the gap between a
number of disparate accelerator technologies.

– We needed a very small number of mandatory headers to ease
generation of a SPEAD stream by constrained devices (currently
4 words)

– Self description extends through the receiver to present the user
with an hierarchical, annotated data structure (e.g. numpy record
array)

– Soft Pythonic shell with crunchy C bits fits well with a number of
emerging telescopes.

SPEAD

Overview Online System SPEAD WrapupSignal Displays

 Can be viewed as an accelerator transport
protocol with very tight (and high performance)
numpy integration.

 Infiniband style RDMA should be available
within the next year or so, allowing userspace to
be bypassed for remote copies.

SPEAD

Overview Online System SPEAD WrapupSignal Displays

SPEAD – How can it help us ?

• One of the main reasons for being I/O bound is that
our problem is often not computationally dense
enough.

• By having an accelerator in the I/O path we can
use the spare FLOPS to provide value added
services, such as on the fly decompression, to
reduce the data rates and restore I/O – CPU
balance.

• We can also easily slot in another element in the
processing chain (be it CPU/GPU/FPGA) without
changing our architecture.

Overview Online System SPEAD WrapupSignal Displays

SPEAD – How can it help us ?

• As a simple example of this, visibilities do pretty
well with bzip:

– Raw vis: 1120.9 MB (23913 x 512 x 12 x 8 byte)

– HDF5: 1177.7 MB (incl sensor data)

– Gzip HDF5: 726.5 MB

– Bzip2 HDF5: 631.6 MB

• The decompression can be done on the fly by a
GPU as the data is read from disk, either for further
streaming or GPU/CPU processing.

Overview Online System SPEAD WrapupSignal Displays

 Specification is currently in revision L, update
coming soon (CASPER workshop next week)

 Reference Python implementation available from:

http://github.com/sratcliffe/PySPEAD.git

 GPU accelerated en/decode not in the public
release yet. Still deciding between CUDA and
OpenCL.

 Promises to have a fairly large number of users
which always helps !

SPEAD

http://github.com/sratcliffe/PySPEAD.git
http://github.com/sratcliffe/PySPEAD.git

Overview Online System SPEAD WrapupSignal Displays

 A certain subset of the live telescope data is made
available (via SPEAD) to subscribing clients.

 This gives real time access to the data, and
coupled with a wide variety of canned plots, allows
extensive monitoring of the signal path.

 The displays are accessible via the standard
MeerKAT iPython control shell.

 Diverse diagnostics such as ADC input
histograms, amplitude and phase closures,
spectral displays and dirty images can all be
shown (and animated in real-time).

Signal Displays

Overview Online System SPEAD WrapupSignal Displays

 Plotting for signal displays is handled via matplotlib.

 We have developed an HTML5 based matplotlib backend which allows
the plots to be viewed from any location through a web browser.

 This provides a number of benefits:

 A completely cross platform backend (Firefox 4.0+ / Chrome / Safari 5.0)

 High speed animation (fairly complex plots can be animated up to 60 fps) and
optimal network bandwidth usage (esp. compared to X forwarding)

 User does not have to be collocated with the data to be processed (uses iPython
distributed computing framework)

 Pure Python module means no extra dependencies.

 Thumbnail browser shows all available plots and allows easy switching between
them.

 Fully interactive including zooming and clickable axes.

 Client data can persist through network disconnects and server process being
killed.

Matplotlib HTML5

Overview Online System SPEAD WrapupSignal Displays

KAT-7 Signal Displays

Overview Online System SPEAD WrapupSignal Displays

KAT-7 Signal Displays

Overview Online System SPEAD WrapupSignal Displays

Overview Online System SPEAD WrapupSignal Displays

• We have a first pass high performance ecosystem for

handling our online processing and visualisation

requirements.

• As an extension of the CASPER philosophy we are

trying to provide a hardware building block with a range

of easily extensible software modules.

• Flexible realtime data inspection critical for set to work

and early commissioning, and probably for a long time

thereafter.

• We believe that these standard software tools will allow

rapid development of GPU based radio astronomy

systems.

In Conclusion

