Millimetre Interferometry

ERIS 2013

Dwingeloo, The Netherlands, 9-13 September 2013

Michael Bremer, IRAM Grenoble

- Dark clouds in space and their molecules
- Building millimetre antennas
- What changes for the observer for cm → mm
- Calibration
- Atmospheric water vapour
- Flux
- NOEMA

Motivation: Dark Clouds in Space

Motivation: more Dark Clouds in Space

Protoplanetary Disks

Dark clouds are of interest because:

- The formation of stars takes place in dark clouds,
- the late Red Giant phases of the life of a "medium mass" star involve heavy mass loss by stellar winds that hide the star in a cold, dusty cocoon,
- Many galaxies show large-scale structures of dark clouds in their morphology.

This part of the stellar and galactic life cycle is completely inaccessible for optical astronomy!

Dynamics? Masses? Composition? Chemistry? ...

The first obvious approach: look for molecular Hydrogen

- H₂ is a symmetric molecule.
- Unfortunately it has a very low angular momentum, which requires a lot of energy to excite: $E_{rot} = \hbar^2/(2\Theta) J \cdot (J+1)$
- Consequence: H₂ has transitions from the IR to the UV, but its emission traces only hot or shocked gas.
- In cold, dark clouds H₂ may be abundant, but it does not emit!

We need another molecule ...

Next choice: Carbon monoxide (CO)

- Asymmetric molecule, easy to excite even in cold clouds.
- UV radiation above 11.09 eV required to break it up
- Most abundant molecule after H_2 , ~ 10⁻⁴
- CO can self-shield in dark clouds (see e.g.Visser et al, A&A 503, 323)
- Line frequencies for dominant isotopes: see http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html or http://physics.nist.gov/cgi-bin/micro/table5/start.pl

	¹² C ¹⁶ O	¹³ C ¹⁶ O	¹² C ¹⁸ O
(1-0)	115.271 GHz	110.201 GHz	109.782 GHz
(2-1)	230.538 GHz	220.399 GHz	219.560 GHz
(3-2)	345.796 GHz	330.588 GHz	329.331 GHz
(4-3)	461.041 GHz	440.765 GHz	439.089 GHz

Chemistry in dark clouds

dark + cold ≠ slow + inactive + boring!

- supersonic turbulence, magnetic fields
- photochemistry based on the interstellar radiation filed in outer layers, cosmic rays on the inside
- catalytic reactions on dust grains
- freeze-out of components on dust grains
- very reactive molecules, sometimes faster than expected under terrestrial conditions

Reaction networks for Carbon-rich molecules

Figure 6. The most important chemical reactions involving carbon-bearing molecules. M stands for metal.

From van Dishoeck, 1988

Reaction networks for Oxygen-rich molecules

Figure 7. As Figure 6, but for oxygen-bearing molecules.

From van Dishoeck, 1988

Reaction networks for Nitrogen-bearing molecules

Figure 8. As Figure 6, but for nitrogen-bearing molecules. From van Dishoeck, 1988

Some useful molecules

molecule	abundance ^a	transition	type	λ	T^b_{\circ}	A_{ul}	$n_{ m crit}^c$	comments
					(K)	(s^{-1})	(cm^{-3})	
H_2	1	$1 \rightarrow 0 \text{ S}(1)$	vibrational	2.1 µm	6600	8.5×10^{-7}	7.8×10^{7}	shock tracer
СО	8×10^{-5}	$J{=1}\rightarrow 0$	rotational	2.6 mm	5.5	7.5×10^{-8}	3.0×10^{3}	low density probe
OH	3×10^{-7}	$^{2}\Pi_{3/2}$;J=3/2	Λ -doubling	18 cm	0.08	7.2×10^{-11}	1.4×10^{0}	magnetic field probe
NH_3	2×10^{-8}	(J,K)=(1,1)	inversion	1.3 cm	1.1	1.7×10^{-7}	1.9×10^{4}	temperature probe
H_2CO	2×10^{-8}	$2_{12} \rightarrow 1_{11}$	rotational	2.1 mm	6.9	5.3×10^{-5}	1.3×10^{6}	high density probe
CS	1×10^{-8}	$J=2 \rightarrow 1$	rotational	3.1 mm	4.6	1.7×10^{-5}	4.2×10^{5}	high density probe
HCO ⁺	8×10^{-9}	$J{=}1 \rightarrow 0$	rotational	3.4 mm	4.3	5.5×10^{-5}	1.5×10^{5}	tracer of ionization
H_2O		$6_{16} \rightarrow 5_{23}$	rotational	1.3 cm	1.1	1.9×10^{-9}	1.4×10^{3}	maser
//	$< 7 \times 10^{-8}$	$1_{10} \rightarrow 1_{11}$	rotational	527 µm	27.3	3.5×10^{-3}	1.7×10^{7}	warm gas probe

^{*a*} number density of main isotope relative to hydrogen, as measured in the dense core TMC-1

^b equivalent temperature of the transition energy; $T_{\circ} \equiv \Delta E_{\rm ul}/k_B$

^c evaluated at T=10 K, except for H_2 (T=2000 K) and H_2O at 527 μ m (T=20 K)

From: Stahler & Palla, "The Formation of Stars"

The importance of CO was the main driver to build instruments for frequencies beyond 100 GHz !

The atmospheric transmission windows

Do we need to go to Space?

Dry air: scale height 8.4 km Water vapour: scale height 2.0 km

You can (nearly) walk into Space for mm radio astronomy! A desert can do for the 3mm band. Favourite: High altitude desert.

Getting rid of water vapour by going high and/or dry

SMA: 4100m

PdBI: 2550m

ATCA: 208m

CARMA: 2440m

What properties must a mm telescope have?

Telescope (Country) a)	Reflector	Wavelength $(\lambda)/$	Electromagnetic	Reflector Quality
	Diameter [m]	Frequency (v) b)	Diameter $\mathcal{D} = D/\lambda$	$Q = D/\sigma^{b}$
		[mm]/[GHz]	[@/1000]	[Q/1000]
Radio Telescope				
Arecibo (USA)	300	60/5	5	200
Effelsberg (Germany)	100	10/30	10	150
Nobeyama (Japan)	45	3/100	15	400
IRAM (Spain)	30	1.3/230	23	460
IRAM (France)	15	1.3/230	11	300
JCMT (Hawaii)	15	0.65/460	23	750
CSO (Hawaii)	10	0.37/800	27	500
Optical Telescope				
Palomar (USA)	5	$5 \times 10^{-4} / 5 \times 10^{15}$	10 000	100 000
KECK (USA)	10	$5 \times 10^{-4} / 5 \times 10^{15}$	20 000	200 000
ELT ^{c)}	\sim 50	$5 \times 10^{-4} / 5 \times 10^{15}$	100 000	1 000 000

Table 1.2 Electromagnetic Reflector Diameter and Surface Precision.

a) see list of Acronyms of observatory sites;

^{b)} approximately shortest wavelength of observation, estimated precision σ ;

^{c)} next generation extremely large optical telescope (see http://www.eso.org).

Radio telescopes and their optics: Gaussian optics formalism required.

Unwanted wavefront deformation must be $< \lambda / 10$ (i.e. surface + pointing + focus +...)

THEFE

How to build a millimetre antenna

Von Hoerner–diagram. Telescope quality D/σ (D = reflector diameter, σ = surface precision, rms value) and natural limits of gravity and thermal effects, for mm – wavelength (•) and cm–wavelength telescopes (o). The lines labelled 1 mm and 4 mm show the relation $\lambda_{min} = 16 \sigma$. For the limiting relations see von Hoerner [1967 a, 1977 a] and Baars [2007]. G = GBT telescope, E = Effelsberg telescope.

Problem:

- must be precise enough for your highest frequency,
- with a large collecting area,
- in a place where you have encouraging weather statistics,
- and stay within budget.

Homological Design:

Manage grav. deformations: Tilted main reflector changes its focus but stays a paraboloid !

Forces acting on a Telescope (and Enclosure).						
Influence/	Time Variability	Components	Loss of			
Force			Observing Time			
Gravity	quasi–static	gravity	negligible			
Temperature	slow	air, wind, sun, sky, ground	some			
	1/4 – 3 h	& internal heat source				
Wind & Gusts	fast, 1/10–10 s	ambient air	important			
Atmosphere	fast	temperature, H ₂ O vapour,	(dominant)			
		clouds, precipitation				

Millimetre Telescopes vs. the Real World

Temperature variations and telescope geometry

Two approaches to get the desired millimetre telescope performance:

- choose a material with compatible constant of thermal expansion
- control the reflector temperature (insulation, climatisation, radome, astrodome)

 $6\,[mm](D/100[m])(\varDelta T/^oC)\ \stackrel{<}{{}_\sim}\ \lambda_{min}$

 $\Delta T \ \stackrel{<}{_\sim} \ \lambda_{min}[mm]/(6D/100[m]) \ (steel)$

Von Hoerner (1967, 1975)

Reflector Diameter D	100 m	30 m	20 m	15 m	12 m	12 m
Material	steel	steel	aluminium	CFRP-steel	steel	CFRP
CTE [μ m/m/K]	12	12	22	5 ^{<i>a</i>)}	12	3
Example	Effelsberg	IRAM	Onsala	IRAM		ALMA
λ_{\min} [mm]/ v_{\min} [GHz]	30/10	1/300	3/100	1/300	0.375/800	0.375/800
$\Delta T [^{\circ}C] \lesssim$	5	0.5	1.25	2.5	0.5	2

^{*a*)} estimated value for a combination of CFRP and steel.

Wind and Ice

At high altitude, one has to expect wind and large temperature fluctuations, and often snow and ice.

• MM Telescopes are mostly of Cassegrain or Gregorian design, with filled reflector surfaces (no wire mesh). Wind force: $F_w = \frac{1}{2} \rho V^2 A c_w$

Free-standing telescopes are more sensitive to high wind speeds but protective radomes absorb strongly at mm and sub-mm wavelengths

• Reflectors may need de-icing (heated surfaces). Pre-emptive heating to avoid ice attachment, getting rid of ice after formation is not easy.

Precipitation	Density	Heat Capacity	Volume Heat	Heat Conductivity
	ho [kg/m ³]	€ [J/kg/K]	Capacity $\rho \mathscr{C}$ [MJ/m ³ /K]	k [W/m/K]
Water	1 000	4 200	4.20	0.6
Ice	920	2 0 0 0	1.84	2.25
Snow	400	2 000	0.80	0.5
Frost	$\sim 100-200$	~ 600	~ 0.1	\sim 0.05 – 0.2

 Table 4.4 Thermal Properties of Water, Frost, Snow and Ice.

Receiver technology and backends

Problem: take a part of the spectrum at high frequencies and convert it to low frequencies where conventional electronics work.

In the cm range: first amplify, then down convert in frequency **In the mm range:** first down convert in frequency, then amplify.

• HEMT amplifiers: Direct amplification, ~15 K cooling sufficient

Today up to 115 GHz on telescopes; beyond 200 GHz in the lab Instantaneous b/w $\sim 30\%$

• SIS Mixers: 4 K cooling necessary

Heterodyne mixing up to 700 GHz (Niobium); > 1THz (NbTiN) Instantaneous b/w 2 x 8 GHz

• HEB mixers: typically 4 K cooling

Heterodyne mixing Several THz Instantaneous b/w ~ 4 GHz

(**HEMT**=High Electron Mobility Transistor; **SIS**=Supraconductor-Isolator-Supraconductor, **HEB**=Hot Electron Bolometers)

Overview of HEMT, SIS and HEB performance

Courtesy A. Navarrini, IRAM

Schematic view of a cooled receiver

SIS receivers are currently the dominant technology in mm interferometers above 100 GHz. There are three sub-types:

SIS mixer types: DSB, SSB and 2SB

Single Side Band (SSB): Either the USB or the LSB is downconverted to IF, i.e. one sideband is rejected. Sideband rejection achieved (at Iram) by mechanically tunable backshort:

SSB SIS mixer currently installed in EMIR and PdBI Band 2 receivers

RF band: 129-174 GHz (2 mm band); IF Band: 4-8 GHz

SIS mixer types: DSB, SSB and 2SB

Sideband Separating mixer (2SB): Both sidebands (USB and LSB) downconverted and separated to independent outputs

SIS mixers currently installed on IRAM receivers are SSB and 2SB (no DSB).

Connecting millimetre antennas into an interferometer

Same as for cm instruments, but with scaled-up performance.

- LO system: The frequency for the heterodyne detection must either be generated from a common frequency source (connected element array) or be re-generated from first principles at each antenna (e.g. VLBI).
- **Correlators:** must be high-speed machines in the Tera to Peta operations/sec range that can be extensively re-configured for the placement of bands and spectral resolution
- **Computer systems:** required to control antennas, frontends, backends and to record the data

Special case: 3mm VLBI (GMVA)

- Detection must be achieved within the atmospheric coherence time. The higher the frequency, the shorter the time. Needs high instantaneous bandwidth.
- Frequency standards on each antenna must have excellent short-term phase noise, which is dominated by a quartz phase-locked to an active hydrogen maser.

Intermediate conclusion:

Fig. 1-5. Grote Reber's meridian-transit radio telescope. Many modern radio telescopes bear a striking resemblance to this early instrument.

Building your own millimeter interferometer (trying to follow the steps of Grote Reber) takes a lot of time.

It is typically easier to submit proposals to existing facilities: ALMA: http://almascience.eso.org/ SMA: http://www.cfa.harvard.edu/sma/ IRAM: http://www.iram-institute.org/ CARMA: http://www.iram-institute.org/ ATCA: http://www.narrabri.atnf.csiro.au/ What changes for the observer between cm and mm waves?

With increasing frequency:

- No external human interference in the data
- Non-thermal sources become weaker but thermal sources are not strong yet,
- atm. water vapour and clouds become more absorbent, therefore:
 - stronger weather dependency of observations
 - Tsys of low elevation observations becomes a lot worse (choose your sources carefully, don't skim the horizon!)
- polarization in astronomical objects becomes weaker
- the time variability of quasars increases (flux and polarisation)

Calibration steps (several we know already)

Opacity correction: observe (every 20 minutes or more often) hot load, cold load, sky and determine T_{sys} , T_{rec} and receiver gain

- RF calibration on a strong quasar
- Phase calibration on point-like quasars
- Real-time phase correction (more on this in a moment)
- Flux calibration (more on this in a moment)
- Amplitude calibration

For the IRAM Plateau de Bure, we use the **GILDAS package**. Easy to install and use, graphical user interface, ASTRO software to plan your observations, CLIC software for interferometric data reduction, MAPPING to map, clean and analyse your data cubes...

Calibration steps (several we know already)

Opacity correction: observe (every 20 minutes or more often) hot load, cold load, sky and determine T_{sys} , T_{rec} and receiver gain

- RF calibration on a strong quasar
- Phase calibration on point-like quasars
- Real-time phase correction (more on this in a moment)
- Flux calibration (more on this in a moment)
- Amplitude calibration

For the IRAM Plateau de Bure, we use the GILDAS package. Going really into details here would take too much time. If you are interested: IRAM organizes an interferometry school every two years, past lectures are available on-line under the "science users - events" section of http://www.iram-institute.org.

Real-time phase correction of water vapour

14.91

40

-3.29

Tran-

40

20

20

Ionospheric plasma phase noise scales down with 1/v, and can be neglected above 80 GHz

30m pointing under anomalous refraction

PdBI observation with phase noise

We will look at the PdBI phase noise in more detail ...

Amplitudes and phases on a point source

6-antenna observation (15 baselines) in extended configuration, ~ 8 minutes

Tropospheric phase noise

Three impacts on observations: a) the point source appears to move,

Tropospheric phase noise

b) we loose integrated flux because visibility vectors partly cancel out. Formula: $V_{OBS} = V_{IDEAL} \cdot exp(-\phi^2/2)$ with phase noise ϕ in radian. Observations were at 89 GHz and average phase noise 30°: 12.5% loss. If we would have used a frequency 2 or 3 times higher: 42% or 71% loss ...

Tropospheric phase noise

c) and we loose more signal on the longest baselines, which provide the finest details of our maps.

Configuration:W27-E68-W12-N46-N20-E12

Wind speed: 9 m/s from Azimuth -59°Pointing: Azimuth=-91°, Elevation=67.3°Frequency: 88.950 GHz

- Atmospheric phase noise is worst on the longest baselines.
- The power-law break is weather dependent, and can be at several km.

The physics behind the scenes

What we experience in the radio range differs from optical seeing.

Scale of turbulence: FI (diffraction)		SCALE (D)	INTERMEDIATE $a \leq D$	LARGE SCALE (refractive regime, $a > D$)
Phase variation	$\Delta \phi < 1$ radian	$\Delta \phi > 2.6$ radians	$\Delta \phi > 2.5$ radians	(renues regime, a > 2)
over scale a:	VLBI		Optical	30M, PDBI
Short integration result	IMAGES superimposed on "error" beam	BLUR ("seeing disk")	SPECKLES	IMAGE MOTION (= Anomalous Refraction)
Remark	Images can still be formed. Some of the power is scattered to large angles (λ/a) .	The diffraction limited beam disappears into the "error" pattern.	$(D/r_o)^2$ images	
Long integration result	same as snapshot result.	same as snapshot result.	BLUR (beam size convolved with seeing disk)	BLUR (In long integrations, the radio seeing disk is the smoothed envelope of the image motion.)
Point source image size: snapshot:	$\frac{\lambda}{D}$	$\frac{\lambda}{a}$	$\frac{\lambda}{D}$	$\frac{\lambda}{D}$
Long integration:	same	same	$\left(\frac{\lambda^2}{r_o^2} + \frac{\lambda^2}{D^2}\right)^{1/2}$	$\left(1.4\frac{\lambda^2}{r_e{}^2}+\frac{\lambda^2}{D^2}\right)^{1/2}$

Symbols: $a = \text{scale size of moist air packet}; D = \text{size of antenna, or interferometer baseline}; r_o = \text{diameter of atmospheric coherence region}; at radius r_o/2, wavefront phase error <math>\Delta \phi = 2.6$ radians.

From: Downes and Altenhoff (1989), Anomalous Refraction at Radio Wavelengths, Proc. of the URSI/IAU Symposium on Radioastronomical Seeing, Beijing 15-19 May 1989

Monitoring wet path delay: where to look

- Δ radio path ~ Δ quantity of water vapor along the line of sight
- water vapor emits in the radio range, we can measure Δ T(sky).
 - clear sky: Δ path ~ Δ vapor ~ Δ T(vapor) = Δ T(sky) (easy)
 - cloudy sky: Δ path ~ Δ vapor

 $\Delta T(sky) = \Delta T(vapor) + \Delta T(cloud)$

(tricky)

Monitoring wet path delay: where to look

- Δ radio path ~ Δ quantity of water vapor along the line of sight
- water vapor emits in the radio range, we can measure Δ T(sky).
 - clear sky: Δ path ~ Δ vapor ~ Δ T(vapor) = Δ T(sky) (easy)
 - cloudy sky: Δ path ~ Δ vapor

$$\Delta T(sky) = \Delta T(vapor) + \Delta T(cloud)$$

(tricky)

PdBI 22 GHz radiometers

- Cloud opacity is $\sim \upsilon^2~$ for wavelength » droplet size.
- All exponential terms at 22 GHz can be linearized for realistic observing conditions at 82 GHz.
- $T_{wvr} = F_{eff} \cdot (T_{vap} + T_{cloud}) + (1 F_{eff}) \cdot T_{amb} + T_{rec}$

Then the combination of 3 channels $T_{triple} = (T_1 - T_2 \cdot \upsilon_1^2 / \upsilon_2^2) - (T_2 - T_3 \cdot \upsilon_2^2 / \upsilon_3^2)$

removes cloud emission and constant temperature offsets if $\upsilon_1{}^2/\upsilon_2{}^2 = \upsilon_2{}^2/\upsilon_3{}^2$

PdBI 22 GHz radiometer

Choice of frequencies for the Plateau de Bure Radiometers:

Three channels of 1 GHz bandwidth each: υ_1 =19.175 GHz , υ_2 =21.971 GHz , υ_3 = 25.175 GHz Selected by fixed filters on the 8 GHz bandpass of a single receiver.

It was not possible to stay on ITU protected frequency bands to reach the required sensitivity. Calibration hardware: a waveguide-mounted noise diode and an ambient load table.

22 GHz radiometer – practical implementation

Our example on MWC349 from the beginning:

22 GHz radiometer – practical implementation

The corresponding phase noise vs. projected baseline plot:

Primary flux calibration

Required:

(a) for correct global flux scale and

(b) to combine observations of different epochs and configurations

Sometimes used but problematic:

Antenna Efficiencies: decorrelation is neglected

Planets: already resolved at 3mm, spectral absorption lines (e.g. Mars, Jupiter, Saturn), slowly time variable, not always visible.

Moons of outer planets: often too close to the parent planet (we need at least 3 primary beams distance), flux models less known

Minor Planets: fluxes can vary within a day, models not well known

Time variability of quasars

Source: 3C84

pwv @ 1mm < 3.5 mm pwv @ 3mm < 7.0 mm

2005

2005

Time (Year)

pwv @ 1mm < 3.5 mm pwv @ 3mm < 7.0 mm

Time (Year)

Source: 3C273

2010

2010

Courtesy M. Krips (IRAM)

Best solution so far (PdBI): Radio star MWC349

Courtesy M. Krips (IRAM)

MWC349 is resolved but not complicated

A short glance into the future

The Northern extended mm Array (NOEMA) Project

The Northern extended mm Array (NOEMA) Project

Some more scientific highlights if you are not too hungry yet ...

Planetary science

Remnant HCN on Jupiter from Comet P/Shoemaker-Levy Impacts

Map polaristion

M 2-9

CO *J*=2-1....

The tight waist of the Butterfly nebula

Castro-Carrizo et al

Study accretion mechanisms onto AGN

Massive dense cores (MDRs)

CygX-N48 (top) and

CygX-N53 (bottom)

At 3.5mm (left) with one or two main cores in the central regions

that divide into smaller fragments at 1.3mm (right).

From Bontemps et al. 2010, A&A 524, 18

06^s

Wang et al. 2010

Gravitationally lensed sources.....

Kneib et al. 2005

The End.

Thank you!