Radio Interferometry packages and formats

Anita Richards UK ALMA Regional Centre JBCA, University of Manchester

International radio arrays Omitting specialised e.g. CMB, solar arrays

VLA(USA/Mexico)

ALMA (ESO/N.America

/E.Asia/Chile)

Space VLBI (Russia/Japan/ Global)

e-MERLIN (UK)WSRT (NL)IRAM (F)LOFAR (NL/W.Europe)VLBA (USA)IRAM (F)SMA, CARMA (USA)KVASAR

GMRT (India)

And more being developed all the time!

ATCA, LBA (Aus)

SKA and pathfinders (S.Africa/Aus/Global; project office UK)

Global Very Long Baseline Interferometry

DIFFNAP GIP: Alpha Control of the second sec

New-generation array demands

- Wide-field imaging
 - Mixed antenna diameters
 - Narrow channels, short integrations
 - GB TB data sets
 - Subtract confusing sources
 - 3D faceting and *w*-projection
 - Mosaicing
 - Non-isoplanatic fields see LOFAR talk
- Huge raw data volumes
 - Pipelines and parallelisation
 - Automate flagging where possible
- Wide-Band imaging
 - Spectral curvature
 - Mixed spectral and continuum configurations

New-generation array demands

- Wide-field imaging
 - Mixed antenna diameters
 - Narrow channels, short integrations
 - GB TB data sets
 - Subtract confusing sources
 - 3D faceting and *w*-projection
 - Mosaicing
 - Non-isoplanatic fields see LOFAR talk
- Huge raw data volumes
 - Pipelines and parallelisation
 - Automate flagging where possible
- Wide-Band imaging
 - Spectral curvature
 - Mixed spectral and continuum configurations

New-generation array demands

- Wide-field imaging
 - Mixed antenna diameters
 - Narrow channels, short integrations
 - GB TB data sets
 - Subtract confusing sources
 - 3D faceting and *w*-projection
 - Mosaicing
 - Non-isoplanatic fields see LOFAR talk
- Huge raw data volumes
 - Pipelines and parallelisation
 - Automate flagging where possible
- Wide-Band imaging
 - Spectral curvature
 - Mixed spectral and continuum configurations

Atmospheric correction techniques

Phase of Observed Data (deg)

- Low frequencies ionosphere
 - Polarization affected
 - GPS measurements
- High frequencies water in troposphere
 - Phase rotated rapidly
 - Absorption affects amplitudes
 - Rapid switching between phase-ref/target
 - Solve for rate or fit polynomials to phases
 - Water vapour (WVR) & \tilde{T}_{sys} measurements
 - Apply correction tables
 - Refractive phase effects $\propto \nu$ "delay"
- Transfer solutions between data sets

Astronomical Image Processing System

- Originated by NRAO for VLA in 1978
 - Fortran, C
 - Limited built-in scripting/math operations
 - Historically most widely used package for cm-wave
 - VLA, MERLIN, most VLBI ... many more interferometers
 - Some support for single dish and any FITS images
 - Very wide functionality from calibration to analysis
- Especially good for specialised VLBI calibration
- Many sophisticated image analysis tasks
- Python wrapper (Parseltongue) for easier scripting

Starting AIPS

▼	\times
[amsr@KALI INTERFERO]; aips tv=local START_AIPS: Will use or start first available Unix Socket based TV START_AIPS: User data area assignments: (Using global default file /home/amsr/aips/DA00/DADEVS.LIST for DADEVS.P Disk 1 (1) is /home/amsr/aips/DATA/KALI_1	L)
START_AIPS: Starting TPMON daemons on KALI asynchronously Starting up 31DECO9 AIPS with normal priority Begin the one true AIPS number 1 (release of 31DECO9) at priority = 0 AIPS 1: You are not on a local TV device, welcome stranger AIPS 1: You are assigned TV device/server 2 AIPS 1: You are assigned TV device/server 2 AIPS 1: You are userigned oraphics device/server 2 AIPS 1: Enter user ID number	
289AIPS 1:31DEC09 AIPS:AIPS 1:Copyright (C) 1995-2009 Associated Universities, Inc.AIPS 1:AIPS comes with ABSOLUTELY NO WARRANTY;AIPS 1:AIPS comes with ABSOLUTELY NO WARRANTY;AIPS 1:for details, type HELP GNUGPLAIPS 1:This is free software, and you are welcome to redistribute itAIPS 1:under certain conditions; type EXPLAIN GNUGPL for details.AIPS 1:Previous session command-line history recovered.AIPS 1:TOR-key completions enabled type HELP REOD INE for details.	
AIPS9 🗖 TKSRV1 🗖 MSSR 🗖 xterm	

	- ×	X-AIPS tv Screen Server 98 - UNIX 1
Enter TEKSERV, Unix (local) domain		
r 🗆 xterm		
[swewGK0] I INTEREEDOld size turless]		
<pre>START_AIPS: Will use or start first available Unix Socket bas START_AIPS: Will use or start first available Unix Socket bas START_AIPS: Your initial AIPS printer is the START_AIPS: - system name , AIPS type START_AIPS: User data area assignments: (Using global default file /home/amsr/aips/DA00/DADEVS.LIS Disk 1 (1) is /home/amsr/aips/DATA/KALI_1 Tape assignments: Tape 1 is REMOTE Tape 2 is REMOTE START_AIPS: I am GUESSING you are at a workstation called ka START_AIPS: - but have chosen to run the TV locally on KALI START_AIPS: Starting TV servers on kali asynchronously START_AIPS: Starting TV servers on kali asynchronously START_AIPS: Starting TPMON daemons on KALI asynchronously START_AIPS: Starting TPMON daemons on KALI asynchronously Starting up 31DEC09 AIPS with normal priority UNIXSERVERS: Start TV LOCK daemon TVSRV1 on kali Begin the one true AIPS number 1 (release of 31DEC09) at prio STARTPMON: [KALI] Starting TPMON1 with output SUPPRESSED UNIXSERVERS: Start XAS1 on kali, DISPLAY :0.0</pre>	ority = 0	<pre>MSGserver: Starting AIPS task logging, Unix (local) hostna> task #: Message</pre>

AIPS

 \square \square \times

domain

AIPS jargon

- Major operations are performed using Tasks
 - **FITLD** loads data, **CALIB** performs calibration etc.
- Input parameters to Tasks are set by Verbs
 - >Task 'CALIB'; CALSOUR 'MKN273'; SOLINT 1
 - Words/names in 'inverted commas'; numbers bare
 - Not case sensitive, in general
 - Inside AIPS, 12-character limit on file/source names
- To set all defaults: >RESTORE 0
 - Beware: will give values typical for VLA data
 - You will have to set parameters suitable for your data
- To exit and kill all AIPS windows: >KLEENEX

Loading data into AIPS

T	🗌 xterm	I <u></u> □ ×
>task 'FITLD'		
AIPS 1: FIILD: Task AIPS 1: Adverbs	(to store an image or Values	~ UV data from a FITS tape Comments
AIPS 1: INTAPE AIPS 1: NFILES AIPS 1: DATAIN *	1 0 *all ' '	Input tape drive # (0 => 1) # of files to advance on tape Disk file name
AIPS 1: OUTNAME AIPS 1: OUTCLASS AIPS 1: OUTSEQ	0	File name (name) File name (class) File name (seq. #)
AIPS 1: AIPS 1: AIPS 1: AIPS 1:	1	0 => highest unique number => matching (on VLBA) -1 => FITS tape value Disk drive # (0 => anu)
AIPS 1: OPTYPE AIPS 1: AIPS 1: AIPS 1:		Type of data to load, ' ' => all types 'UV' => UV data
AIPS 1: AIPS 1: NCOUNT AIPS 1: DOTABLE AIPS 1:	0 1	'IM' => images Number of files to load. True (1.0) means load tables for images
AIPS 1: DOUVCOMP AIPS 1: DOCONCAT AIPS 1:	1 -1	>0 => compressed data (FITS) >0 -> if VLBA correlator data append data to existing
AIPS 1: AIPS 1: ** press RET #]	[URN for more, enter (files, or if no appropriate] or next line to quit print **

Loading data into AIPS

Where does AIPS put data?

Ŧ	r		1		■ AIPS_MSGSRV_1	\times
	hos	tna.	>	task #:	Message	
	 Kal Kal Kal Kal Kal Kal		->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1:	Task FITLD (release of 31DEC09) begins Found MKN273A observed on 14-FEB-2004 Create MKN273_MER _UVDATA. 2 (UV) on disk 1 cno 35 T	2
	Kal Kal Kal Kal Kal		$\langle \rangle \langle \rangle \rangle \rangle \langle \rangle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle $	FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1:	TypePixelsCoord valueat PixelCoord incrRoCOMPLEX30.0000000E+001.001.0000000E+000STOKES4-1.0000000E+001.00-1.0000000E+000FREQ14.9944900E+091.121.2000000E+070IF11.0000000E+001.001.0000000E+000RA1134442.1421.003600.0000DEC1555313.1501.003600.0000)tat).00).00).00).00).00).00
	KAL KAL KAL KAL KAL KAL		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1: FITLD1:	Coordinate equinox 2000.00 Rest freq 0.000 Vel type: OPTICAL wrt LSR Alt ref. value -4.20762E+05 wrt pixel 8.00 Maximum version number of extension files of type HI is 1 Maximum version number of extension files of type AN is 1 Maximum version number of extension files of type BL is 1 Maximum version number of extension files of type FG is 1 Appears to have ended successfully kali 31DEC09 TST: Cpu= 0.1 Seal= 0 IO= 4	

Where does AIPS put data?

AIPS_MSGSRV_1

Ŧ

_∣__ □ ×

Where does AIPS put data?

What's in the data?

▼ [🗌 xterm	I 🗕 🗆 🗡
<pre>#pcat NIPS 1: catalog on disk 1 AIPS 1: Cat Usid Mapname AIPS 1: 1 89 SPER_67 AIPS 1: 2 89 SPNCALS_67 OIPS 1: 3 89 SPNCALS_67 OIPS 1: 3 89 SPNCALS_67 DIPS 1: 3 89 SPNCAL</pre>	Class Seq Pt Last .UVDATA. 1 UV 30-AUG-2 .UVDATA. 1 UV 16-AUG-2 UVDATA. 1 UV 17-AUG-2 ASAV . 1 UV 17-AUG-2 CL001. 1 MA 18-AUG-2 BM001. 1 MA 18-AUG-2 CL001. 1 MA 18-AUG-2	access Stat 009 14:46:53 009 16:39:01 009 09:55:03 009 09:55:03 009 21:37:14 009 21:37:14
AIPS 1: 8 89 SPER_67 AIPS 1: 9 89 SPER_67 AIPS 1: 10 89 SPER_67 AIPS 1: 11 89 SPER_67 AIPS 1: 12 89 MKN273_EVN AIPS 1: 13 89 MKN273_MER AIPS 1: 14 89 MKN273_EVN AIPS 1: 15 89 M273_ME00 AIPS 1: 16 89 MKN273_EVN AIPS 1: 17 89 MKN273_EVN AIPS 1: 17 89 MKN273_EVN AIPS 1: 17 89 MKN273_EVN AIPS 1: ** press RETURN for m	.WTMOD . 1 UV 18-AUG-2 .ICL001. 1 MA 18-AUG-2 .QCL001. 1 MA 18-AUG-2 .UCL001 1 MA 18-AUG-2 .UVDATA. 1 UV 13 AUG-2 .UVDATA. 1 UV 30-AUG-2 .UVMOD . 1 UV 30-AUG-2 .UVMOD . 1 UV 20-AUG-2 .IBM001. 1 MA 19-AUG-2 .ICL001. 1 MA 19-AUG-2 more, enter Q or next line	2009 21:37:14 2009 21:37:14 2009 21:37:17 2009 21:37:17 2009 14:49:36 2009 15:10:15 2009 15:10:15 2009 22:05:19 2009 16:48:34 2009 14:13:57 2009 14:13:57 2009 14:13:57 2009 14:47:56 to quit print **

What's in the data?

•	▼	. 🗆
#pcat AIPC 1. catalog on dis AIPS 1: Cat Usid Mapr	<pre>#getn 13 AIPS 1: Got(1) disk= 1 user= 89 type=UV MKN273_MER.UVDATA 1 >imh</pre>	>
AIPS 1: 1 89 SPER AIPS 1: 2 89 SPN AIPS 1: 3 89 SPN You can select data name or catalogue	AIPS 1: Image=MKN273A(UV)Filename=MKN273_MERUVDATA.AIPS 1: Telescope=MERLIN2Receiver=AIPS 1: Observer=User #=89AIPS 1: Observ. date=14-FEB-2004Map date=19-AUG-2009AIPS 1: # visibilities40882Sort order	1
number AIPS 1: 8 89 SPER AIPS 1: 9 89 SPER AIPS 1: 10 89 SPER AIPS 1: 10 89 SPER AIPS 1: 11 89 SPER AIPS 1: 12 89 MKN: AIPS 1: 13 89 MKN: AIPS 1: 14 89 MKN: AIPS 1: 14 89 MKN: AIPS 1: 15 89 M27;	AIPS 1: Rand axes: UU-L VV-L WW-L BASELINE TIME1 AIPS 1: AIPS 1: Type Pixels Coord value at Pixel Coord incr F AIPS 1: Type Pixels Coord value at Pixel Coord incr F AIPS 1: COMPLEX 3 0.0000000E+00 1.00 1.0000000E+00 AIPS 1: STOKES 4 -1.0000000E+00 1.00 -1.0000000E+00 AIPS 1: STOKES 4 -1.0000000E+00 1.00 -1.0000000E+00 AIPS 1: FREQ 1 4.9944900E+09 1.12 1.2000000E+07 AIPS 1: IF 1 1.0000000E+00 1.00 1.0000000E+00 AIPS 1: IF 1 1.0000000E+00 1.00 3600.000 AIPS 1: DEC 1 55 53 1.00 3600.000	<pre></pre>
AIPS 1: 16 89 MKN: AIPS 1: 17 89 MKN: AIPS 1: *** press RETUR	AIPS 1: AIPS 1: Coordinate equinox 2000.00 AIPS 1: Rest freq 0.000 Vel type: OPTICAL wrt LSR AIPS 1: Alt ref. value -4.20762E+05 wrt pixel 8.00 AIPS 1: Maximum version number of extension files of type HI is 1 AIPS 1: Maximum version number of extension files of type AN is 1 AIPS 1: Maximum version number of extension files of type BL is 1 AIPS 1: Maximum version number of extension files of type FG is 1 AIPS 1: Maximum version number of extension files of type FG is 1 AIPS 1: Maximum version number of extension files of type FG is 1 AIPS 1: Keyword = 'MAXABSU ' value = -1.0000000E+00	

What's in the data?

•	▼
<pre>#pcat AIPS 1: catalog on dis AIPS 1: Cat Usid Mapr AIPS 1: 1 89 SPER AIPS 1: 2 89 SPN0 AIPS 1: 3 89 SPN0 You can select data name or catalogue number AIPS 1: 8 89 SPER AIPS 1: 9 89 SPER AIPS 1: 10 89 SPER AIPS 1: 11 89 SPER AIPS 1: 12 89 MKN2 AIPS 1: 13 89 MKN2 AIPS 1: 14 89 MKN2</pre>	#getn 13 Difference All Signal All Signal Hirs 1: Image=MKN273A (UV) Filename=MKN273_MER .UVDATA. 1 AIPS 1: Image=MKN273A (UV) Filename=MKN273_MER .UVDATA. 1 AIPS 1: Telescope=MERLIN2 Receiver= AIPS 1: Observer= User #= 89 AIPS 1: Observ. date=14-FEB-2004 Map date=19-AUG-2009 AIPS 1: # visibilities 40882 Sort order TB AIPS 1: # visibilities 40882 Sort order TB AIPS 1: Rand axes: UU-L VV-L UW-L BASELINE TIME1 AIPS 1: Type Pixels Coord value at Pixel Coord incr Rotat AIPS 1: Type Pixels Coord value at Pixel Coord incr Rotat AIPS 1: STOKES 4 -1.0000000E+00 1.00 1.0000000E+00 0.00 AIPS 1: FREQ 1 4.9944900E+09 1.12 1.2000000E+00 0.00 AIPS 1: IF 1 1.0000000E+00 1.00 1.0000000E+00 0.00 AIPS 1: RA 1 13 44 2.142 1.00 </th
AIPS 1: 15 89 M273 AIPS 1: 16 89 MKN2 AIPS 1: 17 89 MKN2 AIPS 1: *** press RETUR	AIPS 1: DEC 1 55 53 13.150 1.00 3600.000 0.00 AIPS 1:

	▼		
		data header a tupe-UV MKN273 MER UVDOTO 1	ץ. No
	AIPS 1: AIPS 1: AIPS 1: AIPS 1: AXes: /isibilities	CCCC InterceductCope=ovHKM275_HER.OVDATA.: Image=MKN273A(UV)Filename=MKN273_MER .UVDATA.: Telescope=MERLIN2Receiver=: Observer=User #= 89: Observ. date=14-FEB-2004Map date=19-AUG-2009: # visibilities40882: Rand axes: UU-LVV-L: WW-LBASELINE: Rand axes:UU-L	1
Amp, LL	AIPS 1: , f, weight RR LR RL Hz Sub-band Pos Pos	Type Pixels Coord value at Pixel Coord incr Ro COMPLEX 3 0.0000000E+00 1.00 1.0000000E+00 0 STOKES 4 -1.0000000E+00 1.00 -1.0000000E+00 0 FREQ 1 4.9944900E+09 1.12 1.2000000E+07 0 IF 1 1.0000000E+00 1.00 1.0000000E+00 0 RA 1 13 44 1.42 1.00 3600.000 0 DEC 1 55 53 13.150 1.00 3600.000 0)tat).00).00).00).00).00).00
	AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1:	Coordinate equinox 2000.00 Rest freq 0.000 Vel type: OP Extension tables Alt ref. value -4.20762E+05 wrt pixel Maximum version number of extension files of type HI is 1 Maximum version number of extension files of type AN is 1 Maximum version number of extension files of type BL is 1 Maximum version number of extension files of type FG is 1 Keyword = 'MAXABSU ' value = -1.000000E+00	

Image data

•	🗌 xterm		\times
AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1:	20;imh Got(1) disk= 1 user= 89 type=MA MKN273_MER.ICLO Image=MKN273A (MA) Filename=MKN273_MER .ICLO Telescope=MERLIN2 Receiver= Observer= User #= 89 Observ. date=14-FEB-2004 Map date=19-AUG-2009 Minimum=-4.29469685E-04 Maximum= 7.45257037E-03 JY	001.1 001. 1 Y/BEAM	
AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1:	Type Pixels Coord value at Pixel Coord ind RASIN 512 13 44 42.142 256.00 -0.01500 DECSIN 512 55 53 13.150 257.00 0.01500 FREQ 1 4.9929902E+09 1.00 1.2000000E+0 STOKES 1 1.0000000E+00 1.00 1.0000000E+0	or Rotat 00 0.00 00 0.00 07 0.00 07 0.00	
AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1: AIPS 1:	Coordinate equinox 2000.00 Map type=NORMAL Number of iterations= 1 Conv size= 0.13732 X 0.06835 Position angle= -22.69 Rest freq 0.000 Vel type: OPTICAL wrt LSR Alt ref. value -4.20762E+05 wrt pixel 8.00 Maximum version number of extension files of type CC is Maximum version number of extension files of type HI is Keyword = 'CCTUTAL ' value = 4.341595E-02	1000 s 1 s 1	AIPS

•	▼				_ □	
			Туре	Name	Class	Seq. No.
Ima	ge data	~= 89	type=MA Filename: Receiver:	MKN273_h =MKN273_MEF =	1ER.ICL001 ₹ ICL001	l.1 L. 1
AIPS 1: AIPS 1: AIPS 1: AIPS 1:	: Observer= : Observ. date=14 : Minimum=-4.2946	-FEB-2004 9685E-04	User #= Map date: Maximum=	89 =19-AUG-200 7.45257037)9 7E-03 JY/H	3EAM
Axes Pos Pos Hz 1 = I = total intensity	Type Pixels RASIN 512 DECSIN 512 FREQ 1 STOKES 1	Coord value 13 44 42.14 55 53 13.19 4.9929902E+0 1.0000000E+0	at P: 12 250 50 255)9 :)0 :	ixel Co 5.00 - 7.00 1.00 1.200 1.00 1.000	ord incr -0.015000 0.015000)0000E+07)0000E+00	Rotat 0.00 0.00 0.00 0.00
AIPS 1: AIPS 1:	Coordinate equi Restoring bear Conv size= 0.13 Rest freq Alt ref. value Maximum version Maximum version Keyword = 'CCFL Keyword = 'CCFL Keyword = 'ZENA tvzoom;tvps	Nov 2000 00 Maj, Min (arcs 732 X 0.06835 0.000 -4.20762E+05 number of ext Number of ext NGLE' value = NGLE' value =	sec), pos Positio Vel type: wrt pixe cension f: cension f: 4.3415 4.3415 -1.2394 6.47200	ition angle= - contangle= - control - control - control Extens iles of typ iles of typ 35E-02 35E-02 48E+02 35E+00	(degrees) -22.69 ion tables be CC is be HI is	1 1

Flexible Image Transport System

- Standard astronomical data format:
 - See Greisen, Calabretta & Valdez or FITS web home
 - UVFITS or IDE FITS for visibility data
 - Image files for 1, 2, 3+ D images
 - Unfortunately several dialects
 - AIPS uses FITS
 - CASA can read/export FITS
- Structure of FITS file
 - Header
 - (Binary) data
 - Extension tables

The Astronomical Image and Table Format

•	🗌 xterm	I	$\square \times $		
▼ SIMPLE = BITPIX = NAXIS = NAXIS1 = NAXIS2 = NAXIS3 = NAXIS3 = NAXIS4 = EXTEND = BLOCKED = OBJECT = 'SPER ' TELESCOP= 'MERLIN2 ' INSTRUME= ' OBSERVER= ' DATE-OBS= '1999-05-25' DATE-MAP= '2000-01-11' BSCALE = 1.000000000(BUNIT = 'JY/BEAM ' EPOCH = 1.9500000(BUNIT = 'JY/BEAM ' EPOCH = 1.9500000(VELREF = ALTRVAL = 1.66710997(ALTRPIX = -1.390000(OBSRA = 3.48128515(OBSDEC = 5.83592651) RESTFRE0= 1.667359064	T / -32 / 4 / FITS 66 / 280 / 1 / T /Tables following main T /Tables following main T /Tape may be blocked /Source name / / / /Obs start date YYYY- /Last processing date 000E+00 /REAL = TAPE * BSCALE 000E+00 / /Units of flux 000E+00 / /Units of flux 000E+03 /Epoch of RA DEC 257 />256 RADIO, 1 LSR 2 556E+09 /Altenate FREQ/VEL re 000E+02 /Altenate FREQ/VEL re 000E+02 /Altenate FREQ/VEL re 485E+01 /Antenna pointing RA 738E+01 /Antenna pointing DEC 400E+09 /Rest frequency	Header Header MM-DD YYYY-MM-D + BZERO HEL 3 OBS f value f pixel HEL 3 CRYAL1 CRVAL1 CRVAL1 CRVAL1 CRVAL1 CRVAL1 CRVAL1 CRVAL2 CRVAL2 CRVAL2 CRVAL2 CRVAL2 CRVAL3	<pre></pre>	/ 5485E+01 / 1123E-05 / 0000E+00 / 1738E+01 / 1123E-05 / 0000E+00 / 6778E+03 / 2529E+02 / 0000E+02 / 0000E+00 /	
DATAMAX = 5,3559360 DATAMIN = -5,4295879)50E+00 /Maximum pixel value 513E-02 /Minimum pixel value	CDELT4 CRPTX4	= 1,00000	0000E+00 / 0000E+00 /	
-				0000E+00 /	
– Fortunate	ely there are t	OOIS More	(0%)	WINUISE =	1+(

• IMHEAD in AIPS or CASA

Polarization jargon CIRCULAR LINEAR

Left-hand LHC, L, LL

Right-hand RHC, R, RR Stokes V = (RR-LL)/2

Cross hands LR RL make linear Stokes Q = (RL + LR)/2Stokes U = (RL - LR)/2iPolarized intensity $P = \sqrt{(Q^2 + U^2 + V^2)}$

Polarization angle $\chi = \frac{1}{2} \operatorname{atan2}(U/Q)$

Linear feeds X,XX, Y,YY

Cross hands XY YX make circular

Stokes I = (LL + RR)/2 = (XX + YY)/2beware, some packages' definitions differ by x^2

FITS axes labels

- Axes contain one+ pixels
- Quantization of physical variable e.g.
 - Position in RA
 - Frequency
 - Label
 - Types of polarization \Rightarrow
 - I (one 'pixel')
 - IQUV (four 'pixels')
 - CASA
- Polarizations also termed correlations

Polarization type	Label	FITS code
Total	I	1
Linear	Q	2
Linear	U	3
Circular	V	4
Circular	RR	-1
Circular	LL	-2
Linear	RL	-3
Linear	LR	-4
Linear	XX	-5
Linear	YY	-6
Circular	XY	-7
Circular	ΥX	-8
Undef	UNDEF	
Linear	POLI	5
Linear	POLA	6

CASA developed to meet NG needs

- aips++ development in c++ started in ~1994
 - Easier to maintain/develop/parallelise
- User-friendly python wrapper since 2007
 - Common Astronomy Software Application
 - 'Task' interface or scripting
 - Underlying aips++ toolkit available
- Measurement Set data format
 - uv data and images in subdirectories
 - In working directory or wherever you want
- Prime motivation (& funding) for ALMA and EVLA
 - ALBiUS (RadioNet) for interoperability with AIPS
- Easy to install

Libraries use Measurement Equation

 $\underline{V}_{ij} = \mathbf{M}_{ij}\mathbf{B}_{ij}\mathbf{G}_{ij}\mathbf{D}_{ij}\mathbf{E}_{ij}\mathbf{P}_{ij}\mathbf{T}_{ij}\mathbf{F}_{ij}\mathbf{S}_{v}(l,m)e^{-i2\pi(uijl+vijm)}dldm + \underline{A}_{ij}$

Vectors		Jones Matrices	Hazards			
\underline{V} isibility = $f(u,v)$	Starting point	Multiplicative baseli	ne error			
<u>I</u> mage	Goal	Bandpass response				
A_dditive baseline	error	Generalised electronic gain				
Scalars	Methods	Dterm (pol. leakage)			
S (manning I to o	hcorvor	E (antenna voltage	pattern)			
polarization)		Parallactic angle				
<i>l,m</i> image plane co	oords	Tropospheric effects	,)			
<i>u</i> , <i>v</i> Fourier plane c <i>i i</i> telescope pair	oords	Faraday rotation				

Using the Measurement Equation

- Hamaker, Bregman & Sault 1996
 - Decompose into relevant calibration components e.g.
- $\underline{V}_{ij}^{obs} = \mathbf{B}_{ij}\mathbf{G}_{ij}\mathbf{D}_{ij}\mathbf{P}_{ij}\mathbf{T}_{ij}\mathbf{F}_{ij}\underline{V}_{ij}^{ideal}$
 - Chose one (or a few) at a time
 - Usually solve fastest-varying first
 - (so averaging over slower-varying)
 - Might have to iterate
 - Linearise and solve by χ^2 (or other) minimization
 - (Same principles as AIPS etc. gain calibration)
- Visibility data are stored in Measurement Sets
 - Accessible directories of tables

Measurement Set visibility data

- Directory of Tables
- MAIN table
 - One row per integration per baseline per spectral window
 - Cells hold complex visibilities and weights
- Similar format for images

>	tree jupit	terallcal.sp	lit.ms
jupi 	terallcal.split.r ANTENNA table.dat table.f0	ns	
	i table,into	I UBSERVHIIUN	
	table,lock	I I table.dat	I SPECTRAL_WINDOW
1	DHIH_DESCRIPTIO	I I table.f0	table.dat
	I table.dat	I I table.info	table₊f0
	I table.fV	I table,lock	table₊f0i
	l table.into	I PUINTING	table₊info
	table,lock	I I table,dat	` table.lock
1	FEED	I I table.f0	I STATE
	I table.dat	I I table.f0i	table₊dat
	I table.fV	I I table.f1	table₊f0
	I table.fVi	I I table.info	table₊info
	I table.info	I table.lock	` table.lock
	table,lock	I PULARIZATION	I table.dat
!	FIELD	I I table.dat	l table.f0
	I table.dat	I I table ₊ f0	l table.f1
	I table.fV	l l table ₊ f0i	l table.f2
ļ	I table.f0i	table.info	l table.f2_TSM1
ļ	l table.info	I table.lock	I table.f3
ļ	table,lock	I PROCESSOR	I table.f3_TSM1
!	FLAG_CMD	table.dat	I table.f4
ļ	I table.dat	table.f0	l table.f5
I	I table ₊ f0	table.info	l table.f6
I	l table.info	l table.lock	<pre>l table.f6_TSM0</pre>
I	table.lock	I SOURCE	l table.f7
I	HISTURY	table.dat	<pre>l table.f7_TSM1</pre>
I	I table.dat	table.f0	I table.f8
I	I table.f0	table.f0i	<pre>l table.f8_TSM1</pre>
I	l table.info	ļ l−- table.info	l table₊info
	table.lock	I ' table.lock	` table.lock

Measurement Set MAIN table

▼ ■ Table Browser								I [$\exists \times$			
<u>F</u> ile	<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> ools E <u>x</u> port <u>H</u> elp											
30	277.1C	Cms										$\textcircled{\begin{tabular}{c} \hline \hline$
data		UVW 🗸	FLAG	WEIGHT	ANTENNA1	ANTENNA2	EXPOSURE	FIELD_ID	T	IME	DATA	
ble	53	[-131860, -138051, 85180.9]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	-17:14:22.00	[4, 1] Complex	
đ	68	[-131776, -138090, 85247.1]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	-17:14:39.00	[4, 1] Complex	
ds	83	[-131692, -138129, 85313.3]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	1.14.38.00	[4.1] Complex	
wor	98	[-131609, -138168, 85379.5]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	3C277.1C	ms[53, 21] =	
key	113	[-131525, -138207, 85445.6]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	Complex /	Array of size [41].
able	128	[-131441, -138246, 85511.7]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1		0	
-	143	[-131357, -138285, 85577.7]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	0 (-0.16	4379 -26361	3)
rds	159	[.131273 .138323 .856/3.7]	[4] 1	[52 5	1	5	7 99	0	1005-04-1	0 (-0.10	4579,-2.0501	5/
ywo	Resto	ore Columns Resize Headers								1 (0.446	854,0.111045	5)
	PAGE N	IAVIGATION First << []	/ 211]	>>	Last	1		Go		2 (-0.07	16612,0.2233	81)
										3 (-2.49	088,-0.86915	3)
										-		

- Some of the columns per visibility
 - Data: Complex value for each of 4 correlations (LL RR LR RL) per spectral channel
 - Inspect in CASA browsetable (rarely necessary)

Visibility data: Measurement Set format

(Edits are stored here first; backup tables can be made and used to modify)

- Unix-like directory structure with binary data and ascii metadata files arranged in subdirectories
- Additional tables in MS and free-standing:
 - Admin: Antenna, Source etc.
 - Processing: calibration, flags, etc.
- ~interconvertible with FITS; similar image format

Science data model format

1 directory, 196 files

Starting CASA

- See web links for downloads (or http://casa.nrao.edu)
 Don't forget the Cookbook!
- Start by typing **casapy** (or set up your choice)
 - This starts the iPython environment
 - Interactive input to tasks in the xterm
 - Logger (see toolbar for display, export options)
 - Access to shell
 - Direct simple commands e.g. 1s
 - Prefix any unix command with ! e.g. !more file
- Python
 - Take care with indentation
 - Case sensitive
 - Zero indexed (e.g. 27 antennas numbered 0~26)
 - Run any scripts or functions you want

Using CASA

Use inp taskname to view inputs
 Greyed parameters are expandable

•		🗆 xterm		I _ 🗆 🗡
Casa < 37>:	inp gaincal inp(gaincal)	. <u>.</u> .	~	1
# gaincal vis	:: Determine = '	temporal gains 3C277.1C.ms'	tro #	Nome of input visibility file
caltable	=	11	# #	Name of output gain calibration table
field	=	11	# #	Select field using field
spw	=		# #	Select spectral window/channels
selectdata	=	False	#	Other data selection
solint	=	'inf'	# # #	Solution interval: egs. 'inf', '60s' (see help)

Using CASA

•		🗌 xterm		I 🗕 🗖 🗡
CASA <38⊳: sel	ectdata = T	rue		
CASA < 39 >: inp > inp	gaincal (gaincal)	1	C	
# gaincal II	Determine t - 'ZC	emporal gair 277 10 mgʻ	18 †ro #	M Callbrator observations Nome of input uisibilitu file
caltable	= 00	211420400	#	Name of output gain
			#	calibration table
field	=	1.1	# #	Select field using field id(s) or field name(s)
spw	=	1.1	# #	Select spectral window/channels
selectdata	=	True	#	Other data selection
			#	parameters
timerange	=	11	# #	Select data based on time range
uvnange	=	11	# #	Select data within uvrange (default units meters)
antenna	=	1.1	# #	Select data based on antenna/baseline
scan	=	1.1	#	Scan number range
msselect	=	11	# #	Optional complex data selection (ignore for now)
solint	=	'inf'	# #	Solution interval: egs. 'inf', '60s' (see help)

Using CASA

- Simplest input to tasks is param=value
 - In this mode, variables are global
 - solint='1min' will appear in all tasks until reset
 - default(gaincal) resets default values
 - tget gaincal restores last successful execution
 - saveinputs(gaincal,'gctry1') saves inputs at any stage
 - execfile('gctry1') restores
 - gctry1 is a text file, view using e.g. !more gctry1
- Help('gaincal') for more details
 - Use the Cookbook for fuller examples
- Export data as FITS files
 - Apply all calibration/flagging first

Running tasks

- In interactive mode
 - Just type e.g. gaincal
 - Tasks are normally run sequentially per session
 - See the logger for progress
- Assign measurements to your variables
 - e.g. noise_target = imstat()
 - Task imstat gives python array of image measurements
 - rms_target = noise_target['rms'][0]
- Beware re-assigning/mistyping task params
 - molint = 'lsin' won't give an error
 - calmode = 'delay' does show up in red

AIPS or CASA? (either? both?)

- Either package for straightforward data
 - Might need 'native' package in early stages
- Raw data format:
 - CASA for SDM, MS, UVFITS, IDI FITS
 - Good for combining different data shapes

- AIPS also for FITS (but harder for linearly pol. feeds)
- Calibration
 - CASA especially for EVLA and ALMA
 - Apply Water Vapour Radiometry etc.corrections
 - Flexible bandpass and polarization calibration
 - Simple delay corrections
 - AIPS for combined delay and rate calibration
 - ALMA task being developed

AIPS or CASA? (or either or both)

- Imaging
 - CASA
 - Wide-band MFS with spectral index/curvature
 - *w*-projection and/or faceting (3-D sky)
 - Multi-scale clean
 - Heterogenous primary beams
 - Mosaicing
 - AIPS
 - Faster, especially sparse multi-facet wide-field images
 - Maximum entropy methods
 - At present, more measurement/analysis tools
- Interoperability
 - Script both in Python
 - Easy to swap data but apply calibration/flags first
 - Most extension tables lost
 - May need to re-calculate/apply weights

... and more

 'Small' field of view (single star, galaxy...)

3

2

1

CN

50

100

(År

 Easy to identify line-free channels

Groeningen Image Processing SYstem

- Data cubes with many 3-D sources
 - No spectral channel is free of a line somewhere in the spatial field of view
- Have to make 'dirty'
 image cube first
 - Select sub-cubes
 - Subtract continuum in image plane
 - Deconvolve beam
- *Possible* in AIPS/CASA
- **GIPSY** *specialised* for this and further analysis

GIPSY overview

- (see website and M Verheyen, Fri am for details)
- Unique capabilities:
 - Operations on
 1-, 2- or 3-D
 subsets
 (frames)
 without
 splitting

GIPSY overview

• (see M Verheyen, Friday am for details)

What you can use GIPSY for

- Operates on image-plane data
 - Apply all calibration, FT (clean) in favourite package
- Input FITS cubes, preferably:
 - 32-bit
 - SIN or NCP projection
 - Frequency units on spectral axis
 - but conversions are possible
- Continuum subtraction
 - Start from dirty image and beam cubes
 - Input must be 2x2ⁿ pixels/side for output 2ⁿ pixels/side
 - Select, subtract, clean
- Spectral analysis of subtracted, cleaned cubes
 - Fit Gaussian profiles, ellipses etc.
 - Make moments
 - Compare models with data etc. etc.

Keep sight of the physics

- Brain gets filled with package jargon
 - task 'CALIB'; calsour 'phaseref'; solint 0.5; docal 100; aparm(7) 3; gainuse 5; solmo 'p'
- Rember this means
 - Take the visibility data for the phase ref and apply existing calibration table 5; minimum snr 3
 - If no other model is given, a point source at the field centre will be used
 - Compare the data with the model phase and calculate the corrections needed
- That way you will know to expect
 - and what to check if you get

Keep sight of the physics

- Brain gets filled with package jargon
 - task 'CALIB'; calsour 'phaseref'; solint 0.5; docal 100; aparm(7) 3; gainuse 5; solmo 'p'
- Rember this means
 - Take the visibility data for the phase ref and apply existing calibration table 5; minimum snr 3
 - If no other model is given, a point source at the field centre will be used
 - Compare the data with the model phase and calculate the corrections needed
- That way you will know to expect
 - and what to check if you get

Keep a full processing history

- Use scripts, or
- Note parameter values
 - Examples for further processing
 - Troubleshooting postmortem

An experienced radio astronomer

task 'KETTLE'
source ='tap'
docoffee = 2
sugarprm=[1,0]
domilk = F
nmugs = 2;go