Future Science Possibilities for the WSRT:

Aperture Synthesis enters the Focal Plane Array Era

Robert Braun (ASTRON)

Outline

background

Focal Plane Array receivers and back-ends

- new capabilities
 - overview
 - •eg. constraining dark energy
 - •eg. imaging the low red-shift cosmic web

Background

- WSRT collecting area (50% VLA) is competitive at those frequencies where it can be efficiently illuminated and the surface is sufficiently reflective (v = 150 MHz – 2400 MHz)
- WSRT "market niche" is (red-shifted) HI and (polarimetric-) continuum imaging with high surface brightness sensitivity
- also: tied-array pulsar observing and VLBI participation

Aperture Synthesis enters the Focal Plane Array Era To what extent can existing telescope's FOV be extended ?

- simulations for a f/D = 0.35 parabola show good illumination (η > 0.8) possible over a field with diameter of about 10 FWHM if ~ 6.5λ diameter field is fully-sampled (or ~5 FWHM for 3.3 λ)
- full sampling requires about
 λ/3 λ/4 spacing
- => about 100 elements for
 3.3λ circle (0.8 m @ 1200 MHz)
- yields ~25 times the FOV with high η in all beams

1.3 m prime focus circle yields ~10 FWHM @ f/D = 0.35 (WSRT)

Proposed FPA System Parameters

- Frequency Band: 850 1750 MHz (bottom end by TV RFI, top end from OH lines)
- Dual Polarization
- Instantaneous BW: minimum of 320 MHz (to be competitive with other L-band systems) preferred goal of 1 GHz (ie. entire band)
- Tsys < 50 K, η_A > 70%
- Freq. resolution: 20 kHz over full BW or finer for smaller BW (corresponds to 4 km/s for the HI line)
- Instantaneous FoV: 25 primary beams (formed from the 100 elements of each FPA)
- Correlation: 14*14 for each of 25 beams, full polarization
- Wide-field application efficiency: 25/4 = 6 x EVLA

What will become possible?

 Survey programs are 50 times faster, so 7 times deeper in the same total integration time
 Continuum Sensitivity: < 7 μJy in 12 hours over 13 deg² 20 μJy 130 deg² 70 μJy 1300 deg² spanning 850 – 1750 MHz => RM synthesis, spectral shape

Orphan GRB's

- 1 GRB / day in γ -rays, but those are only the beamed ones
- 10-100 "orphan" GRB's/day
- radio lifetime of ~ 1 month, peak radio flux ~ 100 μJy
- weekly imaging of same 130 deg² should yield ~ 5 simultaneous orphans above detection limit per epoch

What will become possible?

- The Scintillating Universe
 - scintillation on minute to hour scales (like J1819) yield source properties on 10's of flat spectrum AGN per deg² at 100 μJy level @μarcsec scales and detailed foreground screen parms.

• The Magnetic Universe (confusion limit in Q,U,V perhaps 1 μJy)

- produce RM grid from Galactic pulsars plus background AGN at various distances; with 7 μJy rms (12 hr obs) get detected polarized source density of ~100 deg⁻²
- Precision mapping of Galactic B field, nearby galaxy B fields, cluster B fields (eg. Perseus) and first chance to detect IGM inter-cluster B filaments

What will become possible for Pulsars?

Survey Figure of Merit: $M = FoV \times (A/T)^2 \times BW \times v^{-3.6}$

	FoV	A/T	BW	Μ
	(deg^2)	(m ² /K)	(MHz)	
Parkes 20 cm 13-bm	0.41	107	300	4.2×10^{5}
Parkes 70 cm	0.39	49	32	7.6x10 ⁵
Arecibo 20 cm ALFA 7-bm	0.019	1240	300	2.6x10 ⁶
WSRT 90 cm 8-grate	4.2	47	10	5.6x10 ⁶
WSRT 20 cm FPA-grate	13	196	300	1.5x10 ⁸

~70 times the 2005 state-of-the-art at 20 cm !!

WMAP (first-year) image of CMB fluctuations defines current state-of-the-art

- CMB data provide excellent constraints on model parms. assuming ACDM cosmologies
- BUT direct constraints on dark energy (w=p/p) are weak

Spergel et al. 2003, ApJS, 148, 175

Bennett et al. 2003, ApJS, 148, 1

- acoustic oscillations at harmonics of the sound horizon at de-coupling (WMAP: r_s =144+/- 4 Mpc) also leave imprint on the baryonic power spectrum
- provides a "standard cosmological ruler" to measure change of scale as function of red-shift (Eisenstein et al. 1998, ApJ 504, L57)
- only holds in linear regime, ie.
 k < k_{max}(z), z ~ 1 is desirable

Blake & Glazebrook 2003, ApJ, 594, 665

- very good prospects for determination of w(z) with galaxy surveys
- optimum strategy is to aim for diagonal in (N,V) measurement space (tradeoff of cosmic variance versus shot noise)
- benchmark is SDSS with ~10⁶ galaxies over ~10⁴ deg² at z < 0.2</p>
- goal is ~10⁶, z~1 galaxies over ~300 deg² => V/V_{sloan} ~ 4

Blake & Glazebrook 2003, ApJ, 594, 665, plus adaptations

What will be possible ?

(2008+) WSRT 25-beam FPA (13 deg² FOV)

- could get ~ 10^6 galaxy in 2x10⁴ deg² at z < 0.25 in 3 year survey
- (20??) SKA (100x current sensitivity, 1 deg² FOV)
 - could get ~1.5x10⁶ galaxy in 400 deg² at z < 1.5 in 50 day survey

(2010-2020) dedicated optical 8m class with multi-object spectrograph

high res. num. sim. predict cosmic web of filaments between galaxies
 apparent correspondence with QSO absorbers

Dave et al. 1999, ApJ 511, 521

strong (density-dependent) evolution with cosmic epoch
 collapse of over-dense regions yields greater proportion of WHIM (z=0)

- ~30% baryons in galaxies (@ z = 0)
 - association with QSO absorbers with $N_{HI} = 10^{18} 10^{22} \text{ cm}^{-2}$
- ~30% baryons in warm-hot inter-galactic medium (WHIM)
 - condensed, shock-heated phase: T ~ 10⁵ 10⁷ K
 - association with QSO absorbers with $N_{HI} = 10^{14} 10^{18}$ cm⁻²
 - ties in with evidence from FUSE OVI absorption (Sembach et al. 2003) for Galactic corona, R > 70 kpc, n ~10⁻⁴-10⁻⁵ cm⁻³
- ~30% baryons in diffuse inter-galactic medium
 - diffuse, photo-ionized phase: T ~ 10⁴ K
 - association with QSO absorbers with $N_{HI} = 10^{12} 10^{14} \text{ cm}^{-2}$
- decreasing (micro- not macro-) neutral fraction with N_{HI}
 - ~1% at $N_{HI} = 10^{17} \text{ cm}^{-2}$, < 0.1% at $N_{HI} = 10^{13} \text{ cm}^{-2}$
- role of "cold-mode" versus "hot-mode" accretion ???
 - Binney (2004, MNRAS 347, 421) Keres et al. (2004, astro-ph/0407095)

eg. Dove & Shull 1994, ApJ 423, 196

ionization by intergalactic UV leads to exponential decline in neutral fraction: ~100 % to ~3 % from log(N_{HI}) ~ 19.5 to ~ 18
 "HI desert" is major observational challenge !!
 slow decline of neutral fraction below log(N_{HI}) ~ 18 !!

Braun & Thilker 2004, A&A, 417, 421

• M31/M33 filament near systemic velocity, N_{HI} ~ 4x10¹⁷cm⁻² (peak)

The M31 – M33 filament

wide-field WSRT data

Imaging the low-z Cosmic Web The M31 – M33 filament

17.0

GBT confirmation (30 min ON/OFF)

wide-field WSRT data

the first detection of the "cosmic web"/ WHIM in HI emission

Imaging the low-z Cosmic Web The M31 – M33 filament

- clump spectrum, σ ~ 13 km/s => T_k ~ 20,000 K
- average spectrum over 4x3 deg, σ ~ 45 km/s
 - velocity field sub-structure yields σ < 20 km/s
 - looks like T_k ~ 2x10⁵ K (possibly hot-mode accretion)
 - condensations in the WHIM

Cosmic Web and QSO absorption lines Braun & Thilker 2004, A&A, 417, 421

- composite N_{HI} distribution from WSRT mosaic, GBT, wide-field WSRT
- normalization from HIPASS BGC (Zwaan et al. 2003, AJ, 125, 2842)
 - good agreement with QSO absorption line data
- Confirmation of 30-fold increase in covering factor 10¹⁹ 10¹⁷ cm⁻²
- the first image of a Lyman Limit absorption System

Imaging the low-z Cosmic Web How can we go beyond the Local Group?

• require: $\Delta N_{HI} < 10^{18} \text{ cm}^{-2} \text{ over } \Delta V=20 \text{ km/s}$, $D\theta < 20 \text{ kpc}$

First Glimpse

- (2005 2006) WSRT semi-shadowed mode survey of the super-galactic plane filament (α = 8 17 h, δ = 0 +10°)
 - simulate filled aperture by observing at extreme HA's for δ=0 to +10°: grating array (12x144 m) becomes filled- aperture (25x300 m) with spectral baseline quality of interferometer(!) and beam of 3 x 35 arcmin
 - achieve $\Delta N_{HI} \sim 2 \times 10^{17} \text{ cm}^{-2} \text{ over } \Delta V = 20 \text{ km/s}$

 probe extended environments of > 340 galaxies within 40 Mpc with a 22,000 pointing mosaic

survey (~1000 hr) begun in December 2004, now 45% complete

Imaging the low-z Cosmic Web How can we go beyond the Local Group?

The Next Generation

- (2008+) WSRT 25-beam FPA
 - will approach △N_{HI} ~ 10¹⁶ cm⁻² over △V=20 km/s
 - the next order of magnitude in surface covering factor
 - background source density will allow (optical/UV/X-ray) absorption obs. of metallicity and ionization state

baryonic mass measurements and enrichment history

