









# Focal Plane Arrays & SKA

**Peter Hall** 

**SKA International Project Engineer** 

www.skatelescope.org

Dwingeloo, June 20 2005



### **Outline**

#### Today:

- SKA and antennas
- Phased arrays and SKA
- Hybrid SKA possibilities
  - » A hybrid based on AA + SD/FPA
- FPAs, AAs and SKA

#### **■** Tomorrow:

- Politics and collaboration
- Re-useable deliverables in SKA demonstrators



### SKA Challenges

Technology

Performance + Cost

Project Management

- Wideband, efficient antennas
- Fast, long-distance, data transport
- High performance DSP & computing hardware
- New data processing and visualization techniques
- Evolving science goals
- High levels of technical risk
- International politics
  - Possible funding phase slips
- Ambitious delivery timescale
- Industry liaison



### Main Technology Drivers

- Frequency range
- Field-of-view
- Number of independent fields-of-view
- Balance between survey and targetted instrument

See EWG whitepaper reviews + demonstrator evaluations



### **SKA Antennas**

### Range of possible solutions

- Aperture phased arrays
- Flux concentrators (dishes)

#### Need at least two antenna types to meet current spec

- Cost effective high-frequency solutions don't provide enough area at low frequencies
- Want good efficiency at high frequency AND multi-fielding (or at least wide field-of-view) at low frequency
- The "hybrid" approach















### Phased Arrays & SKA

#### Originally:

- Phased FPAs for very large concentrators (dish, cylinder) to get 'reasonable' FOV (~1 deg² at 1.4 GHz)
  - » Small N concepts
- Aperture arrays with very small RF-phased elements ('patches')
  - » Large N concept

#### Now:

- All of the above
- Wide-field cylinder (> tens of deg²)
- Small dish (~12m) + FPA to get wide FOV below ~2 GHz
  » (tens of deg²)
- Digital AA concept feasible?

#### Phased arrays are (almost) ubiquitous in the SKA

Central to (almost) all wide-field concepts



### Story So Far

- Concept whitepapers and EWG/SWG reviews
  - Rounds 1 and 2
- Demonstrator EWG reviews and ranking
  - Including initial risk (performance + economic) assessment
- Combining versatile wide-field concentrator with FPA may be attractive
  - Concentrator = small dish?
  - Captures some (cost?) benefits of dishes with some wide FOV advantages of phased arrays
  - No whitepaper at this point
    - » But interesting to think what overall SKA performance and budget might be achievable
  - Low filling factors (~0.1) but versatile mosaic modes conceivable
- Recognize compelling case for aperture array sub-300 MHz



## A Hybrid SKA?



Courtesy S. Weinreb, Caltech

< 2 GHz

Courtesy ASTRON





### Phased Focal Plane Arrays

#### Distinguished from "multi-feed" systems by:

- Elements combined in a beamformer
- Element spacing chosen to fully-sample the focal field information

#### For radio astronomy:

Bandwidth: >2:1

Low noise







Courtesy Scitech

Amplitude and phase weighting

Conceptual beamformer architecture



# Plain Person's View of FOV Expansion

#### **FOV vs Concentrator Diameter**





### FPAs and SKA

- Much commonality between AA and FPA development work
- But different optimizations
  - Physical (mechanical/weight/..., operating temperature, ...)
  - Electrical (e.m. properties, beam-forming arrangements, ...)
- Expect play-off between AA and SD/FPA for < 2 GHz SKA
  - Can putative cost benefits of SD/FPA be realized?
  - Does the SD/FPA win over just having more (smaller) dishes?
    - » Depends partly on level of DSP/correlation needed for SD/FPA to meet demanding SKA cal and imaging specs
    - $\rightarrow$  6 m dish  $\rightarrow$  ~300 MHz lower limit
  - Can maturity of AA be suffciently demonstrated?
  - What are the science trade-offs for each approach?



### Example SKA Hybrid

#### Assume:

- Frequency range ~0.1 to ~ 3 GHz
- Budget remains at ~ 1B \$/€
- Need to design a survey instrument from Day-1
  - Biases some resource allocation in design

#### Acknowledge the insight of Jaap Bregman

See forthcoming EXPA papers



### Thumbnail of Instrument

### A sky-noise limited aperture array covering 0.1 – 0.3 GHz

- 33 tiles, each, 1.8 m square per aperture (12 m dish equiv.)
- Each tile: 2 x 2 bow-tie elements spaced at 0.9 m
- 2900/cos( $\theta$ ) deg<sup>2</sup> FOV at 0.17 GHz; scales with  $\lambda^2$ 
  - » 33 beams per FOV; multiple FOVs possible
- Const A<sub>eff</sub> to ~ 0.2 GHz (dense array)
  - » Above 0.2 GHz  $A_{eff}$  scales with  $\lambda^2$  (sparse array)

#### ■ A small dish/FPA array covering 0.3 – 3+ (?) GHz

- 4000 x 12 m dishes; F/d  $\sim$  0.5
- 8 x 8 FPAs (Vivaldi notch elements)
  - » 3 bands: 0.3-0.7 GHz, 0.7-1.6 GHz, 1.6-3.6 GHz
- $-A_{\rm eff}/T_{\rm svs}$  per beam  $\sim 9000$ 
  - »  $A_{phys} = 452\ 000\ m^2$ ;  $A_{eff} = 272\ 000\ m^2$ ;  $T_{sys} \sim 30\ K$
- Acknowledged issues of FPA co-location or switching (translation)



## Thumbnail (2)



0.3 - 3 GHz



0.1 - 0.3 GHz



# A SD/FPA Fly-Over





### Performance Snapshot

#### For 0.1 – 0.3 GHz array

- $-A_{\rm eff} \sim 1 \, {\rm km}^2 \, {\rm at} < 0.17 \, {\rm GHz}$
- 7 sr sky survey in 1.5 days with 5 hr integration per field (reaches thermal noise sensitivity, assumes full u,v coverage in 5 hrs)

#### For 0.3 – 3 GHz array

- A<sub>eff</sub>/T<sub>svs</sub> per beam ~ 9000 (cf 20 000 current SKA target
- 25 % fractional bandwidth target met or exceeded
- 0.7 GHz survey: 2 x 10<sup>18</sup> units (cf 1.5 x 10<sup>19</sup> target)
- 1.5 GHz survey: 8 x 10<sup>17</sup> units (cf 3 x 10<sup>17</sup> target)
  - » Survey LF sensitivity reduced because of FOV and A/T shortfall
  - » Maybe gain factor of ~2 with less conservative BW assumptions
- FOV approx frequency independent within each band
  - » 130 deg² at 0.7 GHz
  - » 25 deg² at 1.5 GHz
  - » 5 deg<sup>2</sup> at 3 GHz



# Ball-Park Costing





### Aperture Arrays v. SD/FPA

- AA upper freq limit looks firm at ~1.6 GHz
  - Primarily economics
- Sky coverage, field agility and TRUE MULTI-FIELDING are real AA advantages
- AA is innovative, high risk, technology
  - But no less demonstration in SKA context than cheap dishes + FPAs
    - » By no means certain that one can make a 12m dish, mounts, drives, plus 3 FPAs for \$100k per antenna
    - » However, AA is *very* sensitive to per-unit component and manufacturing costs
- Analog (RF) beamforming stages limit current AA concepts (e.g. in number of FOVs)
  - Digital tiles (e.g. 2-PAD) are ultimate technology which overcome RF B/F limits
  - Might they be viable on a 2015 timescale?
- Digital tiles are also key to SD/FPA approach
  - Economic viability on ~2015 timescale is critical
- Substantial calibration and related issues to be resolved for both AAs and SD/FPA



### Closing Thoughts

- SKA technology selection based on demonstration
  - FPA-based demonstrators will play a key part
- Technology shortlisting 2007; selection 2009
- SKA international funding proposals (2009) rest on credible technology proposals
  - Delayed or impaired technology demonstration will sink the SKA as a next-decade project
- Collaboration is a way of maximizing the likelihood of quality demonstrators
- A favourable industry reaction to SKA will be central to funding success in Eu, Aust, SA ....
  - Virtue in early industry links at regional and international level