Focal Plane Arrays & SKA

Peter Hall
SKA International Project Engineer

www.skatelescope.org

Dwingeloo, June 20 2005
Today:
- SKA and antennas
- Phased arrays and SKA
- Hybrid SKA possibilities
 » A hybrid based on AA + SD/FPA
- FPAs, AAs and SKA

Tomorrow:
- Politics and collaboration
- Re-useable deliverables in SKA demonstrators
SKA Challenges

- Technology
 - Wideband, efficient antennas
 - Fast, long-distance, data transport
 - High performance DSP & computing hardware
 - New data processing and visualization techniques

- Project Management
 - Evolving science goals
 - High levels of technical risk
 - International politics
 - Possible funding phase slips
 - Ambitious delivery timescale
 - Industry liaison
 - Pre-competitive alliances
Main Technology Drivers

- Frequency range
- Field-of-view
- Number of independent fields-of-view
- Balance between survey and targetted instrument

See EWG whitepaper reviews + demonstrator evaluations
Range of possible solutions
- Aperture phased arrays
- Flux concentrators (dishes)

Need at least two antenna types to meet current spec
- Cost effective high-frequency solutions don’t provide enough area at low frequencies
- Want good efficiency at high frequency AND multi-fielding (or at least wide field-of-view) at low frequency
- The “hybrid” approach

SKA concepts have different antennas BUT much post-antenna
Originally:
- Phased FPAs for very large concentrators (dish, cylinder) to get ‘reasonable’ FOV (~1 deg² at 1.4 GHz)
 » Small N concepts
- Aperture arrays with very small RF-phased elements (‘patches’)
 » Large N concept

Now:
- All of the above
- Wide-field cylinder (> tens of deg²)
- Small dish (~12m) + FPA to get wide FOV below ~2 GHz
 » (tens of deg²)
- Digital AA concept feasible?

Phased arrays are (almost) ubiquitous in the SKA
- Central to (almost) all wide-field concepts
Story So Far

- Concept whitepapers and EWG/SWG reviews
 - Rounds 1 and 2

- Demonstrator EWG reviews and ranking
 - Including initial risk (performance + economic) assessment

- Combining versatile wide-field concentrator with FPA may be attractive
 - Concentrator = small dish?
 - Captures some (cost?) benefits of dishes with some wide FOV advantages of phased arrays
 - No whitepaper at this point
 » But interesting to think what overall SKA performance and budget might be achievable
 - Low filling factors (~0.1) but versatile mosaic modes conceivable

- Recognize compelling case for aperture array sub-300 MHz
A Hybrid SKA?

> 2 GHz

Via SD/FPA?

< 2 GHz

Courtesy ASKACC

Courtesy S. Weinreb, Caltech

Courtesy ASTRON
Phased Focal Plane Arrays

- **Distinguished from “multi-feed” systems by:**
 - Elements combined in a beamformer
 - Element spacing chosen to fully-sample the focal field information

- **For radio astronomy:**
 - Bandwidth: >2:1
 - Low noise

[Diagram of phased focal plane array]

[Amplitude and phase weighting]

[Overlapping far field beams]

[Conceptual beamformer architecture]

Courtesy Scitech
Plain Person’s View of FOV Expansion

FOV vs Concentrator Diameter

- FOV (0.3 GHz)
- FOV (0.7 GHz)
- FOV (1.4 GHz)
- FOV (3 GHz)
- Req'd 0.7 GHz FOV

P J Hall, 6/05, v2
FPAs and SKA

- Much commonality between AA and FPA development work
- But different optimizations
 - Physical (mechanical/weight/…, operating temperature, …)
 - Electrical (e.m. properties, beam-forming arrangements, …)
- Expect play-off between AA and SD/FPA for < 2 GHz SKA
 - Can putative cost benefits of SD/FPA be realized?
 - Does the SD/FPA win over just having more (smaller) dishes?
 » Depends partly on level of DSP/correlation needed for SD/FPA to meet demanding SKA cal and imaging specs
 » 6 m dish → ∼300 MHz lower limit
 - Can maturity of AA be sufficiently demonstrated?
 - What are the science trade-offs for each approach?
Example SKA Hybrid

- **Assume:**
 - Frequency range ~0.1 to ~ 3 GHz
 - Budget remains at ~ 1B $/€
 - Need to design a survey instrument from Day-1
 - Biases some resource allocation in design

- **Acknowledge the insight of Jaap Bregman**
 - See forthcoming EXPA papers
A sky-noise limited aperture array covering 0.1 – 0.3 GHz
- 33 tiles, each, 1.8 m square per aperture (12 m dish equiv.)
- Each tile: 2 x 2 bow-tie elements spaced at 0.9 m
- 2900/cos(θ) deg² FOV at 0.17 GHz; scales with λ²
 » 33 beams per FOV; multiple FOVs possible
- Const A_{eff} to ~ 0.2 GHz (dense array)
 » Above 0.2 GHz A_{eff} scales with λ² (sparse array)

A small dish/FPA array covering 0.3 – 3+ (?) GHz
- 4000 x 12 m dishes; F/d ~ 0.5
- 8 x 8 FPAs (Vivaldi notch elements)
 » 3 bands: 0.3-0.7 GHz, 0.7-1.6 GHz, 1.6-3.6 GHz
- A_{eff}/T_{sys} per beam ~ 9000
 » A_{phys} = 452 000 m²; A_{eff} = 272 000 m²; T_{sys} ~ 30 K
- Acknowledged issues of FPA co-location or switching (translation)
0.3 – 3 GHz

0.1 – 0.3 GHz
A SD/FPA Fly-Over

Visualization by Scitech
Performance Snapshot

- **For 0.1 – 0.3 GHz array**
 - $A_{\text{eff}} \sim 1 \text{ km}^2 \text{ at } < 0.17 \text{ GHz}$
 - 7 sr sky survey in 1.5 days with 5 hr integration per field (reaches thermal noise sensitivity, assumes full u,v coverage in 5 hrs)

- **For 0.3 – 3 GHz array**
 - $A_{\text{eff}}/T_{\text{sys}}$ per beam ~ 9000 (cf 20 000 current SKA target)
 - 25 % fractional bandwidth target met or exceeded
 - 0.7 GHz survey: 2×10^{18} units (cf 1.5×10^{19} target)
 - 1.5 GHz survey: 8×10^{17} units (cf 3×10^{17} target)
 - Survey LF sensitivity reduced because of FOV and A/T shortfall
 - Maybe gain factor of ~ 2 with less conservative BW assumptions
 - FOV approx frequency independent within each band
 - 130 deg2 at 0.7 GHz
 - 25 deg2 at 1.5 GHz
 - 5 deg2 at 3 GHz
Ball-Park Costing

- Infrastructure: 20%
- Computing: 20%
- LF Array: 10%
- HF Array: 20%
- Electronics: 30%
Aperture Arrays v. SD/FPA

- **AA upper freq limit looks firm at ~1.6 GHz**
 - Primarily economics

- **Sky coverage, field agility and TRUE MULTI-FIELDING are real AA advantages**

- **AA is innovative, high risk, technology**
 - But *no less* demonstration in SKA context than cheap dishes + FPAs
 - By no means certain that one can make a 12m dish, mounts, drives, plus 3 FPAs for $100k per antenna
 - However, AA is *very* sensitive to per-unit component and manufacturing costs

- **Analog (RF) beamforming stages limit current AA concepts (e.g. in number of FOVs)**
 - Digital tiles (e.g. 2-PAD) are ultimate technology which overcome RF B/F limits
 - Might they be viable on a 2015 timescale?

- **Digital tiles are also key to SD/FPA approach**
 - Economic viability on ~2015 timescale is critical

- **Substantial calibration and related issues to be resolved for both AAs and SD/FPA**
Closing Thoughts

- SKA technology selection based on demonstration
 - FPA-based demonstrators will play a key part
- Technology shortlisting 2007; selection 2009
- SKA international funding proposals (2009) rest on credible technology proposals
 - Delayed or impaired technology demonstration will sink the SKA as a next-decade project
- Collaboration is a way of maximizing the likelihood of quality demonstrators
- A favourable industry reaction to SKA will be central to funding success in Eu, Aust, SA
 - Virtue in early industry links at regional and international level