A Phased-Array Feed Demonstrator for Radio Telescopes

Bruce Veidt and Peter Dewdney Dominion Radio Astrophysical Observatory National Research Council of Canada Penticton, British Columbia, Canada

20 June 2005 Dwingeloo

Outline

- ▷ Motivation
- \triangleright Experiments: What the demonstrator will be used for
- ▷ Implementation: Design and construction of PHAD
- ⊳ Follow-up work

Motivation: Why a Phased-Array Feed?

Quantity	CLAR	Arecibo	GBT	EVLA	EVLA FPA
A_{eff} [×10 ³ m ²]	50	24	5.5	7.3	7.3
T_{sys} [K]	30	30	20	30	30
# Beams	115	7	7	1	26
FoV [deg ²]	0.3	0.02	0.16	0.28	16
Freq. [GHz]	0.1–2	1.2–1.5	1.4–1.8	0.3–40	0.7
Mapping Time	6	360	380	113	11
[s/mJy ² /deg ² /MHz]					

Motivation: Why Do We Want a Phased-Array Feed?

- ▷ Radio telescopes have been typically single-pixel detectors
- With a phased-array feed can sample a large area of the focal plane (ie. more efficient use of aperture)
- \triangleright With a large beamforming network can produce multiple overlapping beams on the sky \Rightarrow radio camera
- ▷ With a versatile beamformer, now have additional capabilities:
 - ▷ correct surface errors
 - ▷ correct aberrations
 - ▷ null interference
 - variable-profile beam for LAR

Motivation: Prior Art

▷ Two groups have done initial phased-array feed experiments

- Fisher & Bradley at NRAO Green Bank
- Ivashina & Bregman at ASTRON
- ▷ Both used special-purpose arrays with limited time on a telescope
- \triangleright Need to build upon that pioneering work \Rightarrow Phased Array Feed Demonstrator (PHAD)

PHAD Design Principles

- Engineering demonstrator, but as similar as possible to a science-capable system
 - Follow a development path that is direct to ultimate goal, avoiding blind alleys
 - ▷ Tackle practical issues of phased-array feeds (shielding, etc.)
- Maintain versatility throughout system for diagnostics and experimentation
 - Data storage for off-line diagnostics and experimentation
 - Real-time beamforming
 - Modular for experimentation and upgrading
- ▷ Demonstrate and explore the capabilities of phased-array feeds

PHAD Team

- ▷ Bruce Veidt (RF/Antennas)
- ▷ Gary Hovey (Digital Systems, formerly with ACSIS)
- ▷ Tom Burgess (Digital, formerly with ACSIS)
- ▷ Gordon Lacy (Mechanical, expert with composites)
- Sean Dougherty (Scientist)
- Peter Dewdney (Group Leader)
- ▷ Walter Brisken (NRAO)
- ▷ Christophe Craeye (UCL)

Experiments

- ▷ Calibration
- ▷ Detect satellites
- Detect astronomical sources
- ▷ Measure aperture efficiency
- Deep integration of weak sources
- Optimal beamforming
- ▷ Cancellation of spillover

- Correct off-axis aberrations
- Measure instrumental polarization
- ▷ Correct polarization errors
- Beamforming with failed elements
- ▷ Interference mitigation
- Null feed-strut scattering

Implementation

- ▷ Will be an engineering (not science) demonstrator
 - ho modest sensitivity $T_{sys} \sim 50{-}100{
 m K}$
 - ho
 ight. modest bandwidth $\sim 1~{
 m MHz}$
 - several hundred active elements
 - ▷ dual-polarized
- ▷ Store data for off-line beamforming
- ▷ Capable of realtime beamforming with FPGAs
- ⊳ 1–2 GHz
- ▷ Use prime-focus reflector antenna (DRAO 26-m)

Implementation: Reflector Antenna

- ▷ 25.6 metre diameter
- $\triangleright f/D = 0.3$
- \triangleright Spillover angle = 80°
- $\,\triangleright\,$ Surface-scattering efficiency rolls off $\sim 2~\text{GHz}$

Implementation: Focal-Plane Fields

 GRASP calculation of 26-m dish

⊳ At 1 GHz

- ▷ Grid represents Vivaldi array
- \triangleright Element spacing = $\lambda/4$

Implementation: Sensitivity Calculations

B	$\sim 10^{6}$ Hz	$\Delta T - \frac{K_s T_{sys}}{2} - 0.1 \mathrm{K}$		
τ	\sim 1 s	$\Delta T = \sqrt{B\tau} = 0.11$		
T_{sys}	\sim 100K	$\Delta \mathbf{S} = 2k_B K_s T_{sys} = 1 \mathbf{b} \mathbf{c}$		
A_e	\sim 260 m 2	$\Delta S = \frac{1}{A_e} \frac{1}{\sqrt{B\tau}} = 1 \text{Jy}$		

Source	Flux	DR
CasA	3100 Jy	35 dB
CygA	2200	33
3C295	29	15
3C48	21	13
3C286	17	12

Implementation: System Gain

- $\triangleright P = k_B T B$
- ightarrow T = 300
 m K
- $\triangleright B = 10^6 \text{ Hz}$
- $\triangleright P = -114 \text{ dBm}$
- $\triangleright P_{A/D} = +12 \text{ dBm}$
- $\triangleright G = 12 + 114 = 126 \text{ dB}$

Implementation: Data Rate

$\triangleright D = 2BNQ$

- $\triangleright D = 2 \times 10^{6} \times 200 \times 8 = 3.2 \times 10^{9} \text{ b/s} = 400 \text{ MB/s}$
- \triangleright 1.5 seconds of data will fill a CD!

Implementation: Data Processing

- OCTAVE simulation using complex random numbers
- D 1.6 GHz AMD CPU with 512
 MB RAM
- $\,\vartriangleright\,$ 5 imes 10⁴ samples in 0.6 seconds
- Equivalent to 0.05 second observation
- Longer observations easily handled with data partition

Implementation: Antenna Array

- ▷ Nearly universal agreement that Vivaldi is best for arrays
- \triangleright Element spacings from λ /10 to λ /2 (conventional) or to λ (high f/D)
- ▷ Ed Reid's PhD thesis project (University of Alberta)
 - ▷ element design
 - ▷ loss analysis
 - ▷ weight reduction
 - Islot-line to coax transition
 - b fabrication/assembly techniques

Implementation: Antenna Array

▷ 1.8–6 GHz

 \vartriangleright 742 mm \times 742 mm

- $> \lambda/2$ spacing at 3 GHz
- \triangleright minimum spacing = $\lambda/3$

- ▷ 340 elements
- ▷ Scale design to 1–2 GHz

Implementation: Antenna Element

- ▷ Note slotline-to-CPW transition
- ▷ Note modularity
 - ▷ easily replace passive elements with active elements

Implementation: Receivers

\triangleright LNAs

- $\triangleright\,$ Agilent ATF-34143 HEMT $\Rightarrow\,$ NF \sim 0.5 dB (35K) but more complex circuit
- $\triangleright~$ Maxim or Agilent LNA chip $\Rightarrow~$ NF \sim 1 dB (70K) less complex circuit
- \triangleright Receivers
 - ▷ select one of many "receivers on a chip"
 - b decision on degree of complexity on-chip (eg. PLL on-chip?)
 - ▷ DSB or SSB?
- \triangleright Low parts-count, low cost

Implementation: Signal Processor

Lyrtech (www.lyrtech.com)

- ▷ 105 MS/s @ 14-bits
- ▷ 16 channels/card
- ▷ 128 MB RAM per card \Rightarrow 1 MHz BW for 4 sec
- One Xilinx Vertex-II FPGA per card
- Matlab/Simulink programming interface
- ▷ Goal to have 192 channels

Implementation: Shielding

- We will have digital electronics in close proximity to array elements and to sensitive receivers
- ▷ Critical to reduce self-generated interference to very-low levels
- ▷ Also need to minimize RF cross-talk between elements
- ▷ We don't know the levels yet
- Attack the problem experimentally with a subset of prototype receiver elements

Development Beyond PHAD

- PHAD will not be sensitive enough or have sufficient bandwidth for radio astronomy
- Also concerned about fabricating and packaging large number of receiver components
- ▷ Can an array be made light enough for an LAR focal package?

Low-Mass Vivaldi Array

- New mechanical engineer that is an expert in fabrication of composite structures (Gordon Lacy)
- ▷ Use Vivaldi substrate (0.25 mm) as a structural element
- ▷ Bond PCB together with conductive epoxy
- ▷ Solid PCB backplane
- \triangleright Estimate 22 kg/m² including antenna, LNA, and support frame
- ▷ Need to fabricate prototypes to verify feasibility

Low-Noise Ambient Temperature LNAs

- ▷ University of Calgary Electrical Engineering
- Leonid Belostotski (PhD Candidate) & Prof. Jim Haslett
- ▷ Goal to develop room temperature IC LNAs
 - use new materials such as SiGe
 - \triangleright take advantage of CMOS scaling to smaller feature size and higher f_T
 - circuit design methods (eg. discovery of error in Shaeffer & Lee's CMOS noise equations has led to a new set of noise optimizations)

Integrated Receiver/Optical Transmitter Modules

- Contract with BreconRidge Manufacturing Solutions (Ottawa)
- BreconRidge specializes in RF/optical communications systems design and fabrication
- ▷ Reality check on LAR data communications requirements
- Looking at signal chain from the output of the LNA to the input of the beamformer on the ground
- ▷ Four-phase work plan:
 - 1. System architecture \Rightarrow no show stoppers
 - 2. Critical subsystems and components \leftarrow Just awarded
 - 3. LAR system performance analysis
 - 4. LAR mechanical concept

Conclusions

- ▷ Have described a Phased-Array Feed Demonstrator (PHAD)
- PHAD is an engineering demonstrator to explore design problems associated with phased-array feeds
- ▷ PHAD will also demonstrate the capabilities of phased-array feeds
- Have a development path with external collaborators leading to astronomy-capable systems

Bonus: Airborne Platform Stability with Active Control

- \triangleright Platform at ~170 m
- \triangleright Wind speed \sim 3.5 m/s

(DRAO LAR Group and McGill University—Nahon & Lambert)

 $\triangleright \sigma \simeq \sigma_{GPS}$