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Outline

Aim
SKA goals and antenna concept of current focus
Antenna-related modelling requirements; NTD, 
xNTD and beyond

Some topics of interest
• FPA design for NTD 
• FPA size vs FoV and f/D
• FPA system modelling
• FPA concepts for enhanced performance eg frequency 

range

Summary
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SKA goals

Sensitivity
Ae / Tsys = 20000 m2 K-1

Frequency range
0.5GHz – 25GHz

Survey speed
FoV (Ae / Tsys )2 BW = 4.6x1015 m4 K-2 Hz at 0.7GHz

eg  FoV = 100 square degrees  BW = 400MHz
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SKA general form with FPA antennas
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SKA antenna concept 

FPAs with all-digital beamforming in paraboloidal 
reflectors

reduce signal-transport and correlator costs
correct for reflector effects eg aberrations and cross 
polarization
RFI mitigation
contiguous FoV
technologies possibly with broader application
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FPA antenna modelling requirements

NTD
FPA design with Vivaldi or similar element, collaboration with ASTRON 
and U. Mass.
Reflector-FPA interaction
System model, including antenna, LNAs, digitizers and beamformer
Preliminary investigation of possible trades and optimum design
Verification

xNTD and beyond
Low-cost reflector options
Optimum design studies; antenna/LNA/conversion/beamforming
Investigate other FPA elements and configurations

increase frequency range
decrease cost
other performance enhancements

Modelling capability enabling such
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FPA size for specified Ae and f/D
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Sensitivity (Ae/Tsys) modelling
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Previous related work on noise coupling

Jan Peter Peeters Weem “Broad band antenna 
arrays and noise coupling for radioastronomy”, 
PhD thesis, U. Colorado, 2001.

Directly radiating arrays
Role of Tx-mode reflection coefficient
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Beamformer weight determination

Maximum Ae (conjugate match)

Maximum Ae/Tsys (Bird and Hayman, URSI GA, 1996)

Maximum Ae/Tsys subject to upper bounds on co- and 
cross-polar sidelobes

Successive Projections (Poulton, Electron. Lett. 1986) 
approach is possible, perhaps including quantization or 
dynamic-range constraints as additional sets

Requirements from image formation studies

φ=w

φ1−= Mw
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Illustration - wire-grid over groundplane
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Illustration – Ae/Tsys
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Illustration – Tsys and Ae
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Illustration – Tb effect on Tsys
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Illustration – Tx-mode reflection 
coefficient
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Illustration - weights
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xNTD and beyond

Other FPA configurations (increased frequency range or reduced 
antenna cost)

Other elements (eg published work on rabbit ear in radar application)
Fractal/nested structures
Conductivity switching
Directive self-complementary structures
3-dimensional digital beamforming
Foveated focal-plane array

Development of EM modelling capability
Flexible boundary element method 
Interactions with other structures, eg reflector and supports, via 
Green’s-function approach or scattering-matrix with free-space modes 
eg SWE
Implementation in grid/cluster computing
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Other FPA configurations – increased 
frequency range

SKA goals 
Ae / Tsys = 20000 m2 K-1

0.5GHz – 25GHz
FoV (Ae / Tsys )2 BW = 4.6x1015 m4 K-2 Hz at 0.7GHz

The data rate into the correlator is proportional to
(FoV/λ2 )BW 

One approach: keep BW constant and let FoV
vary as λ2
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Foveated FPA
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Form 1 –Annular FoV
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Form 1 cont
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Example with offset-fed reflector
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Form 2 – Circular FoV
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Summary

Outline of antenna-related modelling of interest for 
NTD, xNTD and beyond

FPA antenna design for NTD and beyond
System modelling important for determining significance 
of antenna, LNA, digitizer and beamformer properties 
and optimum design
Interested in other elements and FPA configurations to 
get from NTD to SKA 
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Your Contacts

www.csiro.au

Stuart Hay
CSIRO ICT Centre
Tel: +61 2 9372 4288
Email: stuart.hay@csiro.au

For more information, see or contact:

http://www.csiro.au/
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