Holographic performance verification of a Focal Plane Array Prototype

Marianna V. Ivashina

This publication was supported by European Commission FP6 RadioNet Programme.

Marianna V. Ivashina

2d FPA Workshop, 21-22June, 2005

Outline

- Introduction.
- Design approach and performance criterion.
- An example of the FPA prototype for a Westerbork Telescope
- Conclusions and future activities

Introduction – performance requirements

- ✓ High sensitivity (Aeff/Tsys)
- ✓ Wide Field Of View (FOV): 2x(4-5BW) for F/D=0.3-0.6.
- ✓ Smooth FOV

<3dB overlapping point of the beams/oversampling.

Broad frequency band:
2-3 octaves.

Introduction – design trade-off

Challenge for a designer:

- Multi-beaming \Rightarrow large size \Rightarrow the blockage $\uparrow \Rightarrow$ an overall efficiency \downarrow .
- Larger FPA \Rightarrow the efficiency $\uparrow \Rightarrow$ the complexity in a nonlinear manner $\uparrow \Rightarrow$ noise temperature \uparrow .
- ☐ Here we address the design of an FPA in order to optimize the performance (Aeff/Tsys) for a minimum cost.

Design approach

- □ Focal Field (FF) modeling of the reflector.
- □ Sampling of the FF with the array elements.
- Experimental modeling of the mutual coupling effects in the dense array.
- Optimization of the FPA system for the maximum Aeff/Tsys (performance criterion).

Performance criterion: A_{eff} / T_{sys}

Aeff=Aph* η_A , η_A is the aperture efficiency and Tsys is the system temperature.

Definitions:

$$\eta_{A} = \eta_{sp} \eta_{T} \eta_{Ph} \eta_{Pol} \eta_{b}$$
$$Tsys = T_{A} + T_{LNA} + T_{BF} + \dots$$

- Very high η_{sp} , low T_A (blue);
- Very high taper efficiency (green), high T_A.
- The optimal secant squared pattern (red).

An example of the FPA prototype

- Westerbork Radio Telescope (WSRT) Reflector Antenna D=25 m; F/D=0.35.
- FPA synthesis with a 8x9x2 Vivaldi Array
- Specification: - 2-5GHz
 - 2 Beams
 - Analog Beamformer
 - Uncooled

Focal Field modeling of the reflector

- Capabilities and limitations of the multi-beaming operation for the specified F/D.
- The results will be presented here for the sub-array sampling the field from 1 direction. Fig.

Fig. 1 - FFD for different plane wave incidence situations for the WSRT {-3dB (blue), -12 dB

green)

Design approach

- **Focal Field (FF) modeling of a reflector.**
- □ Sampling of the FF with the array elements.
- Experimental modeling of the mutual coupling effects in the dense array.
- Optimization of the FPA system.

Sampling of the FFD with the Vivaldi array using Conjugate Field Matching (CFM) method. F=2.3GHz

Sampling of the FFD with the Vivaldi array using Conjugate Field Matching (CFM) method. F=5.5GHz.

Marianna V. Ivashina

2d FPA Workshop, 21-22June, 2005

Weighting coefficients for the rings using the CFM method (?)

Focal Field (GRASP)

An example of the focal field sampling with 25 elements of the 0.5λ -spaced grid which are excited according to the CFM method

array with mutual coupling

array without mutual coupling

Marianna V. Ivashina

2d FPA Workshop, 21-22June, 2005

Results of the sampling using CFM

- □ Initial design parameters: minimal size of the array, # elements and their arrangement.
 - For our case, from 25 elements (6 rings) to 9/13 elements (2/3 rings) of the 8x9x2 Vivaldi array are used to design the FPA at the frequency band of 2.3 GHz 5.5 GHz.
- In the method, mutual coupling effects are neglected because the assumption is made that the elements are sampling the array aperture field only locally.
- Then, no weights for the rings are determined.

Marianna V. Ivashina 2d FPA Workshop, 21-22June, 2005

Design approach

- **Focal Field (FF) modeling of a reflector.**
- Sampling of the FF with the array elements.
- Experimental modeling of the mutual coupling effects in the dense array.
- Optimization of the FPA system.

Experimental Modeling of the Mutual Coupling Effects in the dense array. In the aperture of the FPA (Method 1)

- Determining the correction factor by comparing the modelled aperture patterns to the measured aperture patterns obtained from NF tests.
- The minimum deviation was used as a criterion for this procedure.

Experimental Modeling of the Mutual Coupling Effects in the dense array In the far-field of the FPA (Method 2)

- Measuring the far-field patterns of the rings in the array environment (NF).
- Combining the measured patterns into the total pattern of the FPA for a certain specified set of the excitation coefficients for the rings (MatLab).
- Calculating the Aeff/Tsys from the total pattern.
- □ The optimization routing is searching for the maximum Aeff/Tsys for the given range of the settings.

Marianna V. Ivashina 2d FPA Workshop, 21-22June, 2005

Experimental Modeling of the Mutual Coupling Effects in the dense array

Marianna V. Ivashina 2d FPA Workshop, 21-22June, 2005

Examples of the beamformer designs. F = 4.0 GHz - 5.5 GHz 2-rings and 1 polarization per beam

1 beam

Marianna V. Ivashina 2d FPA Workshop, 21-22June, 2005

Beamformer design for 2.3 GHz - 4.0 GHz 2 polarizations

1 beam

Marianna V. Ivashina 2d FPA Workshop, 21-22June, 2005

Optimization Results: Measured far-field patterns of the FPA

• is a cosine shape

Marianna V. Ivashina 2d FPA Workshop, 21-22June, 2005

Optimization Results: Measured far-field patterns is a cosine shape

is close to the ideal secant squared shape!

Marianna V. Ivashina 2d FPA Workshop, 21-22June, 2005

Results: Holographic measurements at WSRT (amplitude distribution):

6-cm Horn Feed

2-ring FPA

Results: Holographic measurements at WSRT (phase distribution):

6-cm Horn Feed

2-ring FPA

Marianna V. Ivashina 2d FPA Workshop, 21-22June, 2005

Optimization Results: Calculated Aperture Efficiency for the 13el. FPA

Optimization Results: Calculated Aperture Efficiency and Ta for the FPA

Optimization Results: Weighting coefficients for the 13el. FPA

Loaded dummy elements (solid)

Unloaded dummy elements (dash)

Marianna V. Ivashina 2d FPA Workshop, 21-22June, 2005

Optimization Results: Weighting coefficients for the 13el. FPA

Loaded dummy elements (solid)

Unloaded dummy elements (dash)

Marianna V. Ivashina 2d FPA Workshop, 21-22June, 2005

Array efficiency (reflections, power dissipation in the loads)– correction for the calculated Aperture Efficiency for the FPA

 $\eta_{A} = \eta_{sp} \eta_{T} \eta_{Ph} \eta_{Pol} \eta_{b}$

Marianna V. Ivashina 2d FPA Workshop, 21-22June, 2005

Conclusions

- The FPA was designed using CFM method to determine initial design parameters of the array (size, number and arrangements of clusters/rings,)
- Additional technique was developed to take into account MCEs in the array and to optimize the excitation coefficients of the rings for the maximum sensitivity (Aeff/Tsys) of the telescope.
- The technique was implemented in the modeled parameters using the measured far-field patters of the rings.
- The developed Vivaldi FPA was verified for the WSRT reflector antenna (F/D=0.35).
- For the antenna, up to 70% aperture efficiency is achievable over a wide frequency range, while the fraction of the system noise temperature which is related to the antenna design is a few K.

