Prevalence of neutral gas in centres of low-z galaxy mergers HI Absorption Workshop 2018 ASTRON, Dwingeloo, The Netherlands

→日日×海壁×を建さる建設 量 の名の

Who?Rajeshwari Dutta
(with R. Srianand & N. Gupta, IUCAA, India)From?ESO, Garching

When? 31 August 2018

Galaxy merger & AGN connection?

Hopkins+2006

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Galaxy merger & AGN connection?

Hopkins+2006

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Sample & Observations

- 日本 - 1 日本 - 日本 - 日本

Optical images (SDSS) + Radio images (FIRST, > 50 mJy) \downarrow Sample of 10 $z \le 0.2$ galaxy mergers \downarrow Optical spectra (SDSS/SALT) \downarrow H I 21-cm absorption spectra (GMRT/VLA)

Results in Dutta et al. 2018, MNRAS, 480, 947; arXiv:1807.04298

GMRT

Galaxy merger sample

Galaxy merger sample

Heliocentric Prequency (MHz) 1354 Heliocentric Frequency (MHz) 1353 1352 1397 1355 Ym William 0.90 0.8 -400 200 Velocity Relative to z = 0.01570 (km/s) Velocity Relative to z = 0.04990 (km/s) Velocity Relative to z = 0.03624 (km/s) Heliocentric Proquency (M9(z) 1181.2 1181.0 1180.8 1180.6 1180.4 1180.2 Heliocentric Programsy (MI(z) 1379 1378 1377 Heliocentric Frequency (MHz) 1181.6 1181.4 -200 0 200 Velocity Relative to z = 0.02306 (km/s) -200 Velocity Relative to z = 0.20276 (km/s) Velocity Relative to z = 0.03083 (km/a) Heliocentric Frequency (MHz) 1265 **Mar All**a 0.85 0.80

-200 0 200 Velocity Relative to z = 0.12313 (km/s)

600

HI absorption spectra

Literature sample

Incidence of HI

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Our merger sample ⇒ 70 ± 26%
Ours + literature merger sample ⇒ 83 ± 17%
Low-z radio sources ⇒~ 20 - 30% (Gupta+2006, Maccagni+2017, etc.)

Merger fraction

 $\textit{N}(\rm H\,{\scriptscriptstyle I}) > 10^{21} \Rightarrow 40\%; \ \textit{N}(\rm H\,{\scriptscriptstyle I}) > 3 \times 10^{21} \Rightarrow 50\%; \ \textit{N}(\rm H\,{\scriptscriptstyle I}) > 10^{22} \Rightarrow 100\%$

N(HI) distribution

Mergers have six times higher N(HI) on average

Kinematics of HI

Mergers have slightly larger widths on average

500

Kinematics of HI

Kinematics of individual absorption components

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

SALT long-slit spectra

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ● ○ ●

Kinematics of H_I

 $\sim 60\%~(30\%)$ of absorption components have velocity shift from systemic velocity of radio source $\geq 0\,{\rm km\,s^{-1}}~(\geq +100\,{\rm km\,s^{-1}})$

900

Galaxy properties

No significant dependence on optical and infrared colours, radio power

Galaxy properties

No significant dependence on projected separation and morphology

Parsec-scale circumnuclear gas

Srianand+2015, Orienti+2006

Parsec-scale circumnuclear gas (Preliminary)

900

Take home points

- Incidence of neutral gas $(N(\text{H I}) \sim 10^{21-22} \text{ cm}^{-2} \text{ for } \text{T}_s = 100 \text{ K}$ and $C_f = 1$) in $z \leq 0.2$ radio-loud galaxy mergers $= 83 \pm 17\%$; $\sim 3-4$ times higher than that found for low-z radio sources
- Fraction of intrinsic absorbers that are associated with mergers increases with increasing $N({\rm H\,I})$ threshold; 40% (100%) of the absorbers with $N({\rm H\,I})>10^{21}\,{\rm cm^{-2}}~(>10^{22}\,{\rm cm^{-2}})$ arise from mergers
- Distribution of $N(H_{\rm I})$ among mergers is significantly different from that among non-mergers; mergers give rise to 6 times stronger absorption on average
- Fraction of redshifted absorption components (with respect to systemic velocity of radio source) among mergers is higher by 2-3 times compared to that for non-mergers

Looking forward

- HI 21-cm absorption efficient tool to detect gas-rich galaxy mergers \Rightarrow expand sample of low-z mergers with 21-cm
- N(H I) distribution in samples of radio-loud AGNs \Rightarrow statistically identify mergers at high-z and in upcoming blind 21-cm absorption surveys
 - Space-based high spatial resolution imaging follow-up of high $N({\rm H\,{\sc i}})$ systems at z>0.2 for confirmation

• Follow-up spatially-resolved multi-wavelength spectroscopy ⇒ exact connection between H I absorbing gas & AGN activity

Looking forward

- HI 21-cm absorption efficient tool to detect gas-rich galaxy mergers \Rightarrow expand sample of low-z mergers with 21-cm
- N(H I) distribution in samples of radio-loud AGNs \Rightarrow statistically identify mergers at high-z and in upcoming blind 21-cm absorption surveys
 - Space-based high spatial resolution imaging follow-up of high $N({\rm H\,{\sc i}})$ systems at z>0.2 for confirmation

• Follow-up spatially-resolved multi-wavelength spectroscopy \Rightarrow exact connection between H I absorbing gas & AGN activity

THANKS!

Extra slide: Extended nebular emission

Spectral Axis

Spectral Axis

Extra slide: HI emission & absorption

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Extra slide: Kinematics of HI

Kinematics of individual absorption components

