
The MeerKAT Absorption Line Survey (MALS) Neeraj Gupta (IUCAA)

Ø

PIs: N. Gupta and R. Srianand (IUCAA) http://mals.iucaa.in/

The MeerKAT Absorption Line Survey (MALS)

<u>**1655 hrs</u>** for the sensitive search of HI 21-cm and OH 18-cm absorption lines to map the evolution of cold atomic and molecular gas in galaxies at 0 < z < 2: the redshift range where most of the evolution in the star-formation rate density takes place.</u>

The LSP review process completed.

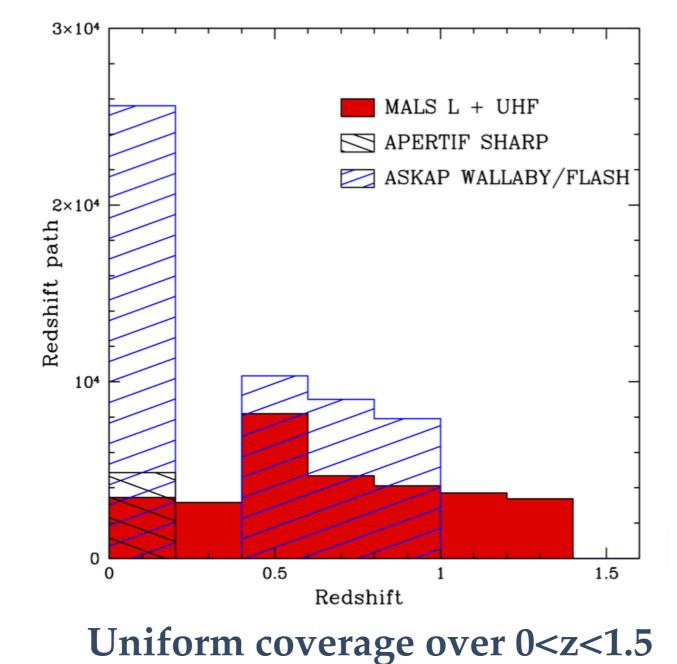
The MeerKAT Absorption Line Survey (MALS)

MALS phase	Number	Time	Spectral	Continuum	Total on-source	
	of pointings	per pointing	rms^\dagger	rms	time	
		(mins)	$(mJy beam^{-1})$	$(\mu Jy beam^{-1})$	(hrs)	
L-band	740	56	0.5	3	691	
(900-1670 MHz)						
UHF-band	370	121	0.6	3	746	
(580-1015 MHz)						

[†] 900-1670 MHz; [‡] 580-1015 MHz.

Estimated at ${\sim}1200\,\text{MHz}$ and ${\sim}800\,\text{MHz}$ for the full band split into 32768 channels.

The MeerKAT Absorption Line Survey (MALS)


Main science themes:

- Evolution of cold gas in galaxies and its relationship with SFR density (~200 detections),
- Fuelling of AGN, AGN feedback and determining fraction of dust-obscured AGNs (~500 detections),
- Variation of fundamental constants of physics: most stringent constraints (comparable to terrestrial atomic clocks).

Comparison with other surveys

+ HI emission, and deep continuum and polarisation images

PoS

The MeerKAT Absorption Line Survey (MALS)

N. Gupta^{*1}, R. Srianand¹, W. Baan², A. Baker³, R. Beswick⁴, S. Bhatnagar⁵, D. Bhattacharya¹, A. Bosma⁶, C. Carilli⁵, M. Cluver⁷, F. Combes⁸, C. Cress⁹, R. Dutta¹, J. Fynbo¹⁰, G. Heald¹¹, M. Hilton¹², T. Hussain¹, M. Jarvis^{7,13} G. Jozsa¹⁴, P. Kamphuis¹⁵, A. Kembhavi¹, J. Kerp¹⁶, H.-R. Klöckner¹⁷, J. Krogager¹⁸, V. Kulkarni¹⁹, C. Ledoux²⁰, A. Mahabal²¹, T. Mauch¹⁴, K. Moodley¹², E. Momjian⁵, R. Morganti², P. Noterdaeme¹⁸, T. Oosterloo², P. Petitjean¹⁸, A. Schröder²², P. Serra²³, J. Sievers¹², K. Spekkens²⁴, P. Väisänen²², T. van der Hulst²⁵, M. Vivek²⁶, J. Wang¹¹, O.I. Wong²⁷ and A.R. Zungu¹²

http://adsabs.harvard.edu/abs/2016mks..confE..14G

MALS: data processing and archiving

♦ Data products

(1) Full spectral resolution (32K) XX, YY and then stokes I data cubes (absorption + emission)

- (2) Wide-field, wide-band, IQUV (~3 uJy) images
- (3) Absorption: catalog of radio sources upto 1 mJy and their spectra
- (4) L-band: HI emission images; and value added data products.

Archive

- (1) 4 PB raw visibility (4s integration) storage: ~1500 LT06 tapes (250 500 TB shipped every few months)
- (2) 12 PB for processed data + data products i.e. calibrated visibilities + cubes
- (3) Images (not cubes) and spectra to be served through a live database

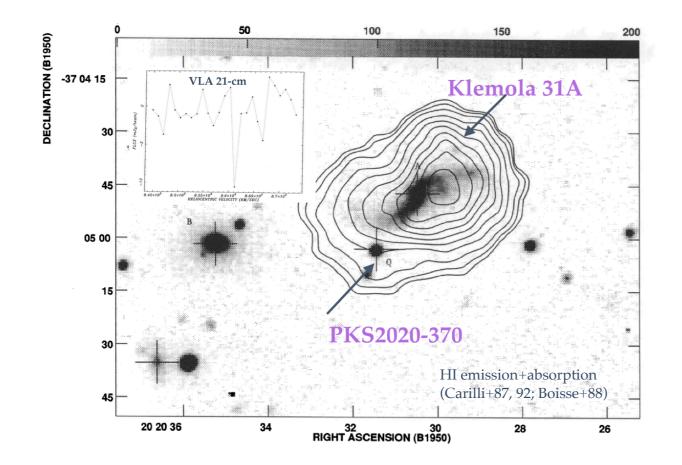
NVSS-WISE							Save	Download
	SOURCE_ID	RA(H:M:S)	DEC(D:M:S)	FLUX	MAJOR	MINOR	PA	P_FLUX
ilters Tx Apply	J000001.65-002209.70	00:00:01.65	-00:22:09.70	212.5	<16.1	<14.9	null	0.40
	J000002.87+095706.60	00:00:02.87	+09:57:06.60	301.4	17.9	<15.4	-2.2	12.22
RA	J000020.33-322059.00	00:00:20.33	-32:20:59.00	520.9	<19.5	<16.8	null	-0.09
	J000040.22-142347.20	00:00:40.22	-14:23:47.20	308.8	16.9	<17.8	-0.3	14.31
Min Max	J000040.47-342410.10	00:00:40.47	-34:24:10.10	219.5	<18.4	<15.9	null	7.60
HH:MM:SS.ss HH:MM:SS.ss	J000045.63-272251.50	00:00:45.63	-27:22:51.50	234.3	<18.3	<14.8	null	4.82
DEC	J000046.92+111429.00	00:00:46.92	+11:14:29.00	201.9	<19.3	<18.8	null	23.56
	J000057.65-105432.20	00:00:57.65	-10:54:32.20	396.7	<16.6	<16.3	null	7.05
Min Max	J000104.57+101928.30	00:01:04.57	+10:19:28.30	320.2	<18.7	<15.1	null	17.81
DD:MM:SS.ss DD:MM:SS.ss	J000105.26-155106.90	00:01:05.26	-15:51:06.90	347.5	<16.9	<16.2	null	1.53
	J000105.48-165924.90	00:01:05.48	-16:59:24.90	730.1	39.8	<17.1	5.7	11.94
FLUX Density	J000106.26-174126.90	00:01:06.26	-17:41:26.90	447.4	<18.4	<16.9	null	2.26
Min Max	J000108.63+191434.30	00:01:08.63	+19:14:34.30	265.1	<16.7	<15.8	null	2.30
Density 0.00 mJy 0.00 mJy	J000108.81-123314.50	00:01:08.81	-12:33:14.50	317.9	34.0	<18.1	-12.4	0.19
	J000113.51+081948.60	00:01:13.51	+08:19:48.60	223.8	25.0	<17.7	26.5	25.64
	J000115.59+084637.10	00:01:15.59	+08:46:37.10	408.3	<18.8	<16.3	null	4.97
	J000118.00-074626.70	00:01:18.00	-07:46:26.70	208.4	<17.5	<16.9	null	3.49
	J000124.49-043801.40	00:01:24.49	-04:38:01.40	632.3	<19.4	<16.2	null	12.60

Multi-wavelength database: refreshing the target list.

MALS: data processing and archiving

♦Processing

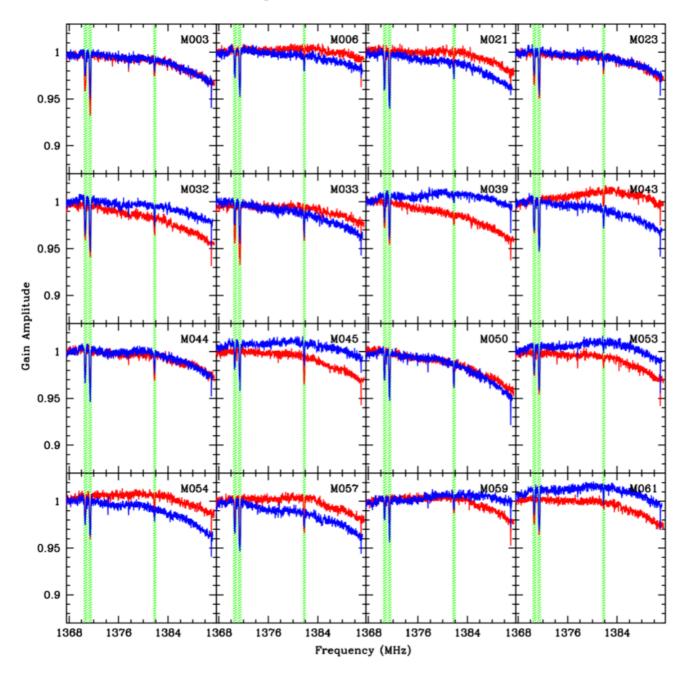
(1) ARTIP: Automated Radio Telescope Imaging Pipeline (CASA-based)

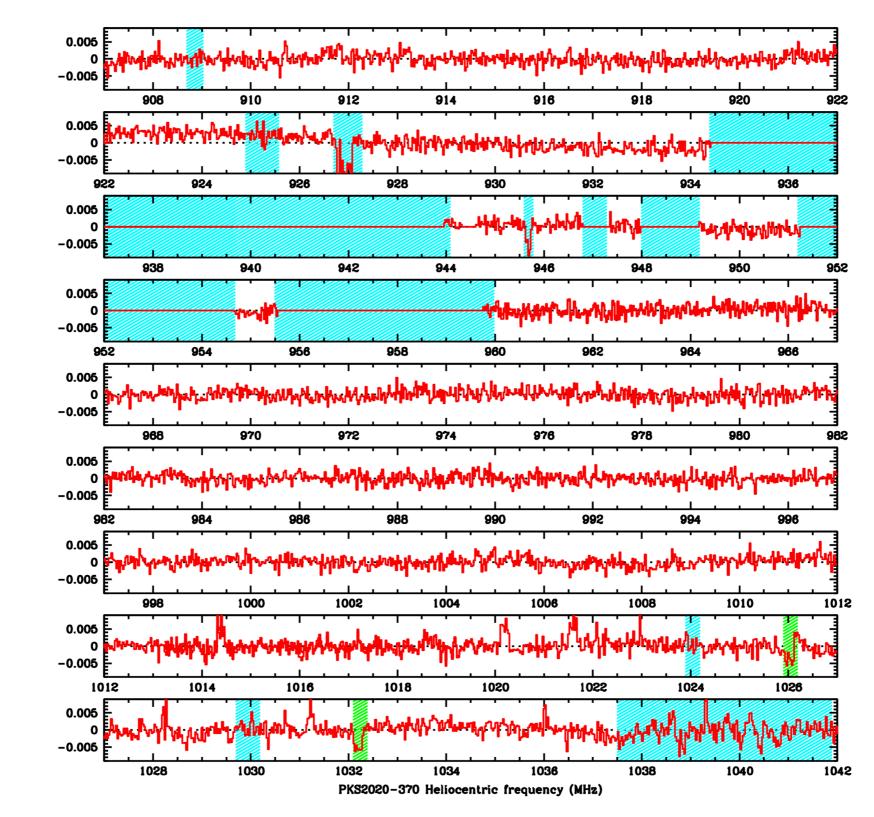

- CASA-based pipeline developed by IUCAA+ThoughtWorks
- Narrow-band imaging version: <u>https://github.com/RTIP/artip</u>
- ARTIP-CUBE: specialised for spectral line processing (development stage)

(2) Cluster at IUCAA for development and processing

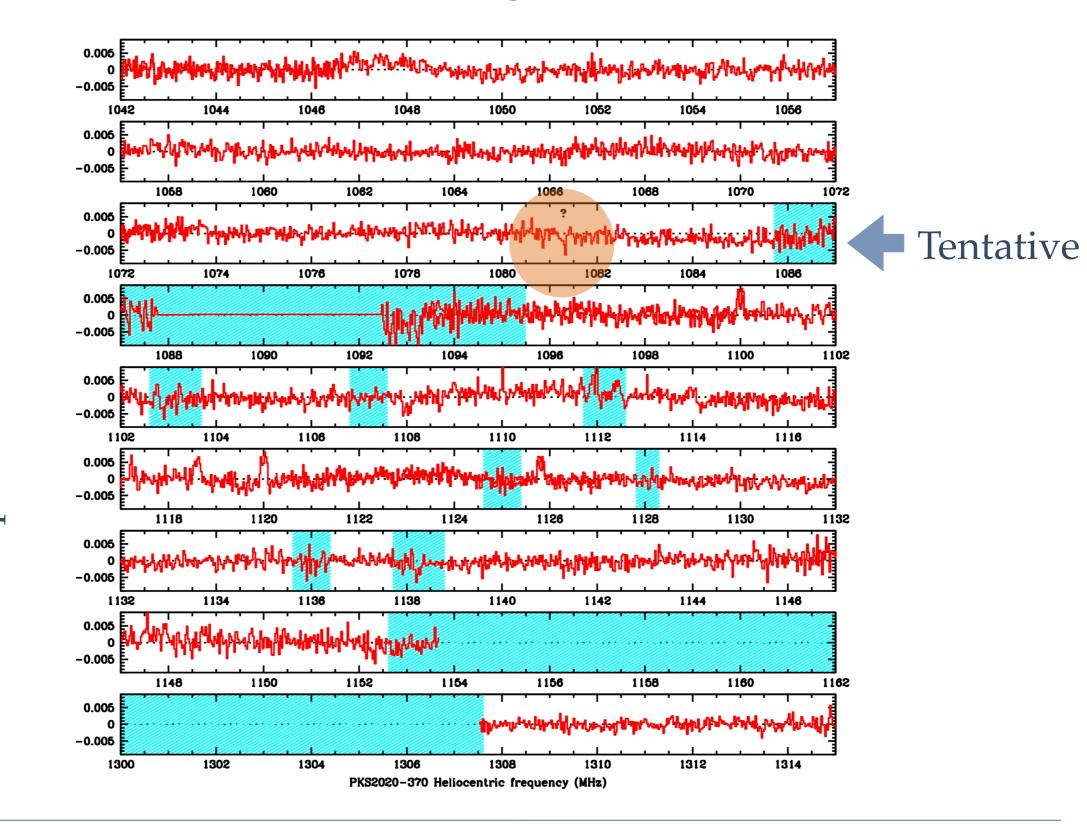
◆ VROOM: 16-node cluster for MALS commissioned (1 + 1 PB)

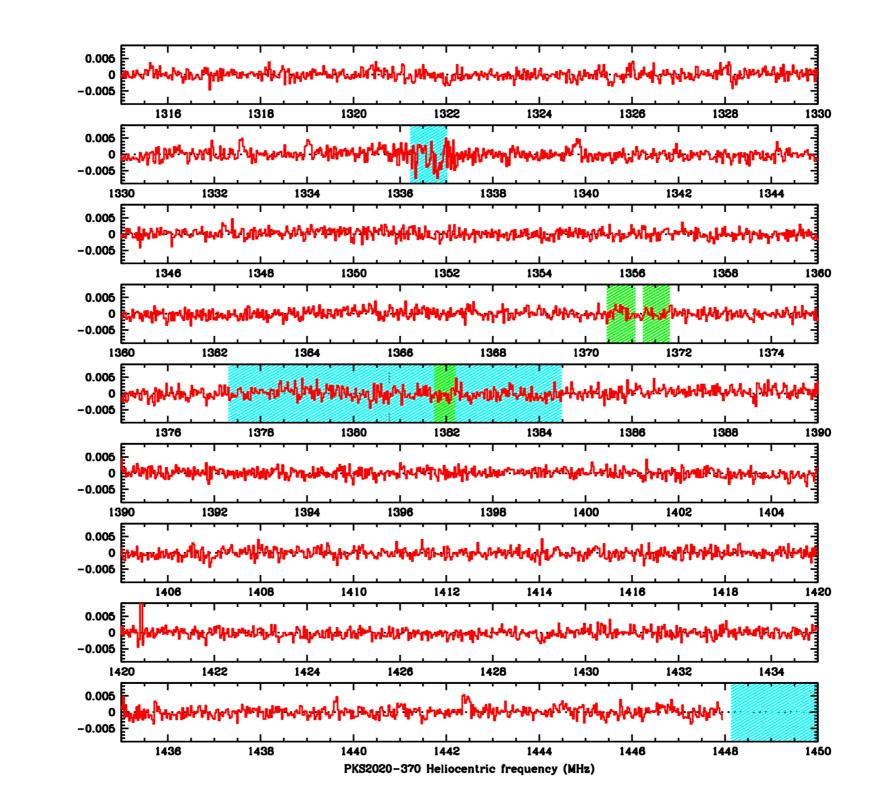
Hardware	Details	Dell Cluster				
Compute Nodes	14 Compute nodes	Manufacturer: Dell.				
		Product Name: R640 (12 compute nodes)				
		Product Name: R740 (2 GPU nodes)				
Processor	Processor Details	Intel [®] Xeon [®] Gold 6126 Processor (19.25M Cache,				
		2.60 GHz)				
Memory	Total Memory in each node	384 GB (12 X 32 GB) DDR4-2666 R ECC memory				
IB	InfiniBand	Mellanox ConnectX-4, Single Port, VPI EDR, QSFP28				
		Adapter				
MPI	Intel MPI	INTEL-Intel Parallel Studio XE Cluster Edition 2018 u3				
Storage	File system type and	Lustre over InfiniBand				
	interconnect used					
Disk	Disk info	600GB 10K RPM SAS Drive				
OS Version	RHEL	RHEL 7.3				

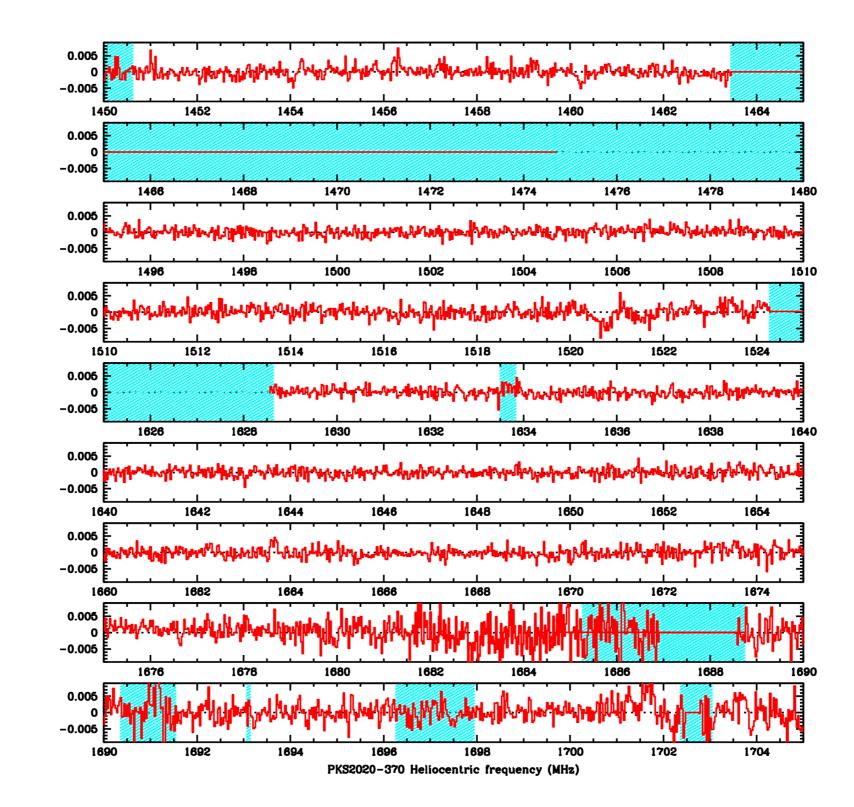


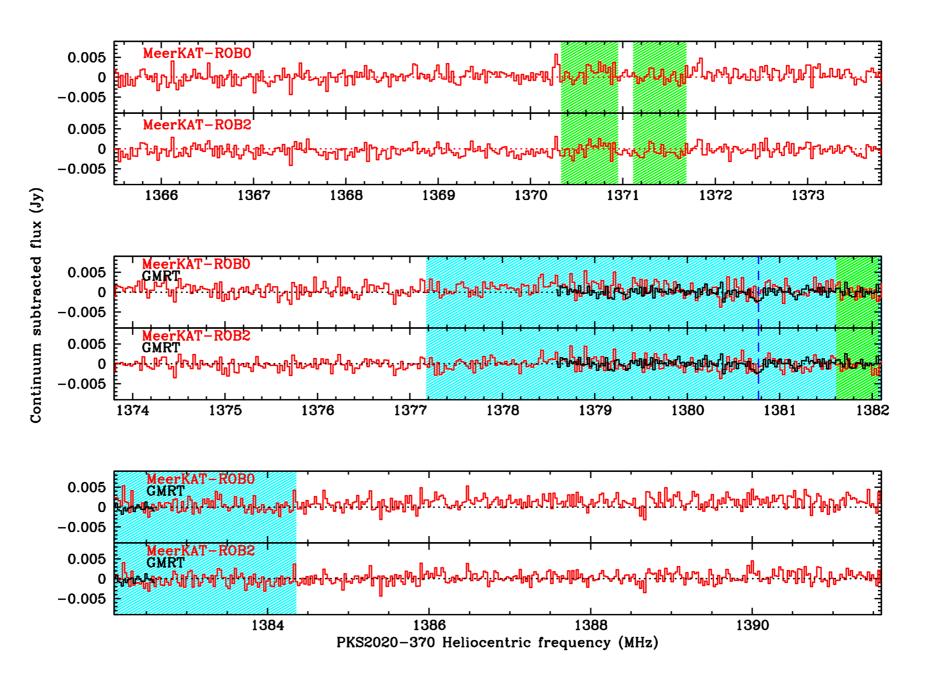

- ◆ MeerKAT-16
- ◆ Lband: 856 MHz
- ◆ ROACH-2 correlator: 32K mode
- ◆ Flux / BP: PKS1934-638
- ◆ Gaincal: PKS1954-388
- ◆ On-source time: 5.8 hrs
- ◆ Data Volume: 700 GB

Date of observation	Antennas				
D1: Nov 7, 2017	16 antennas : m003, m006, m021, m023 , m032 , m033,				
(UTC 15:23 – 21:40)	m039 , m043 , m044 , m045 , m050 , m053 , m054,				
	m057, m059, m061				
D2: Nov 9, 2017	14 antennas: m003, m006, m011 , m021, m033, m048 ,				
(UTC 17:30 – 21:28)	m051 , m052 , m054, m055 , m057, m059, m061, m062				




MeerKAT spectrum of PKS2020-370

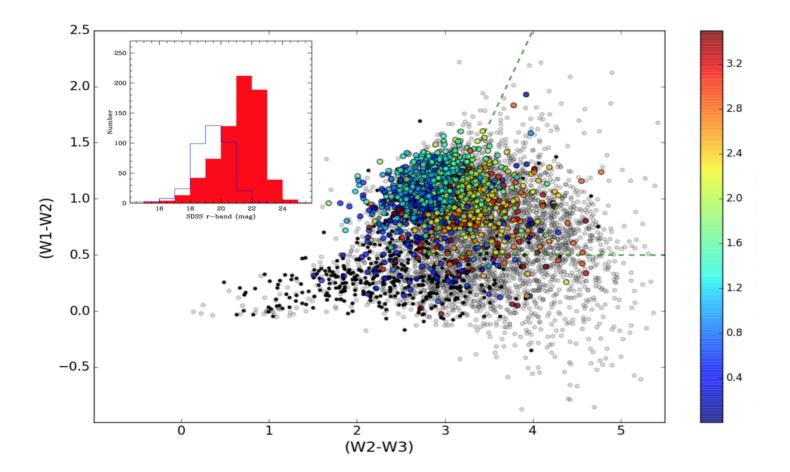




MeerKAT spectrum of PKS2020-370

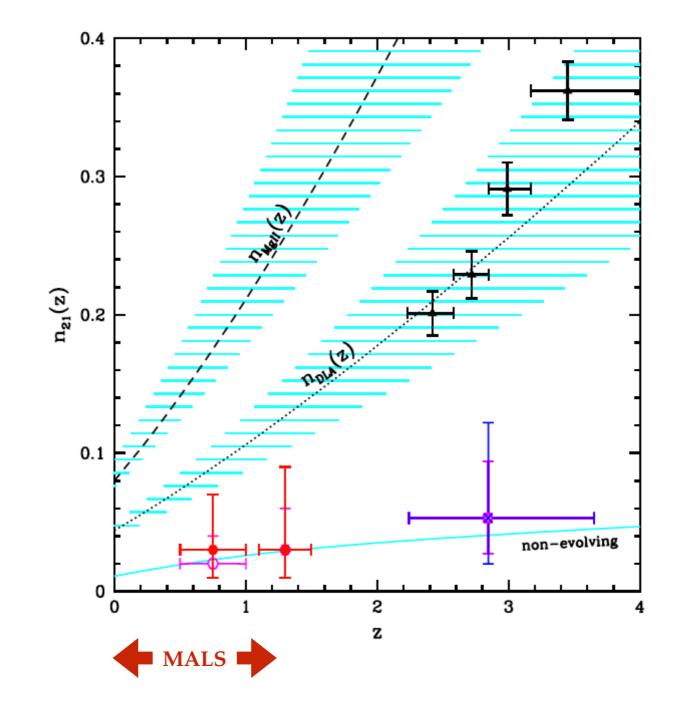
MeerKAT spectrum of PKS2020-370

- MeerKAT spectrum of PKS2020-370
- ✦ Variability of HI 21-cm line
- ◆ Spectral rms higher by 1.3 1.5 (only in 32K mode)

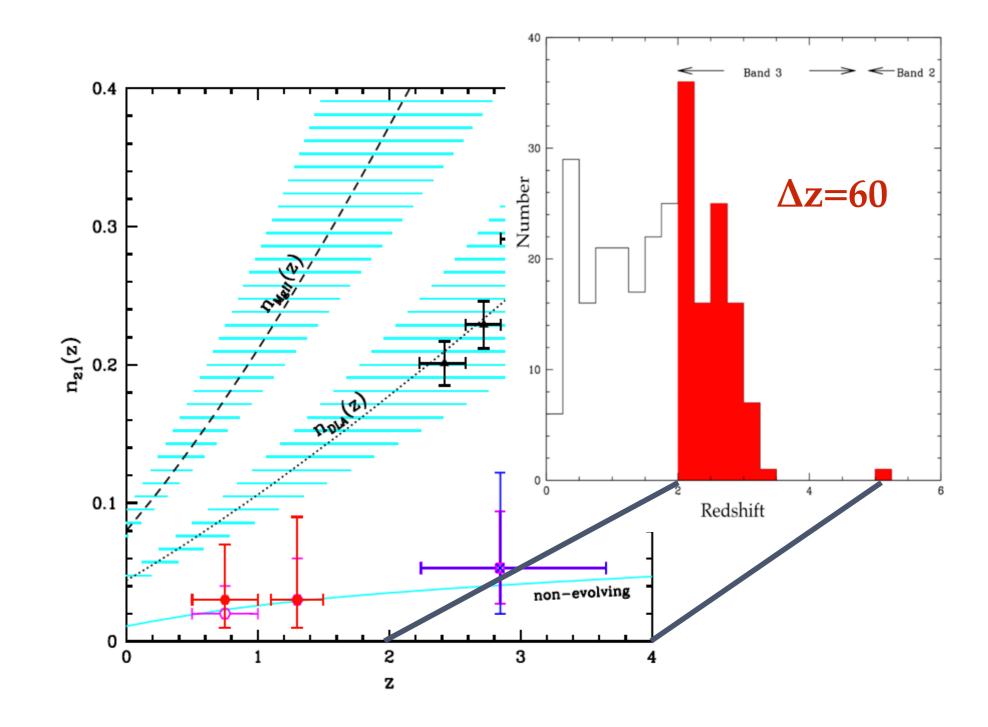

Frequency	Observed	Theoretical	Flux density	
	spectral rms	spectral rms		
(MHz)	(mJy/beam)	(mJy/beam)	(mJy)	
1000	1.4	1.1	362	
1150	1.4	0.9	353	
1400	1.2	0.9	355	
1650	1.2	0.9	355	

Looking forward to SKARAB 32K mode. Better optical spectrum (NaI, CaII) of PKS2020-370.

MALS: SALT/NOT survey (Phase-I)


- ✦ Scarcity bright high-z quasars in the southern hemisphere
- Lack of uniform spectroscopic catalog

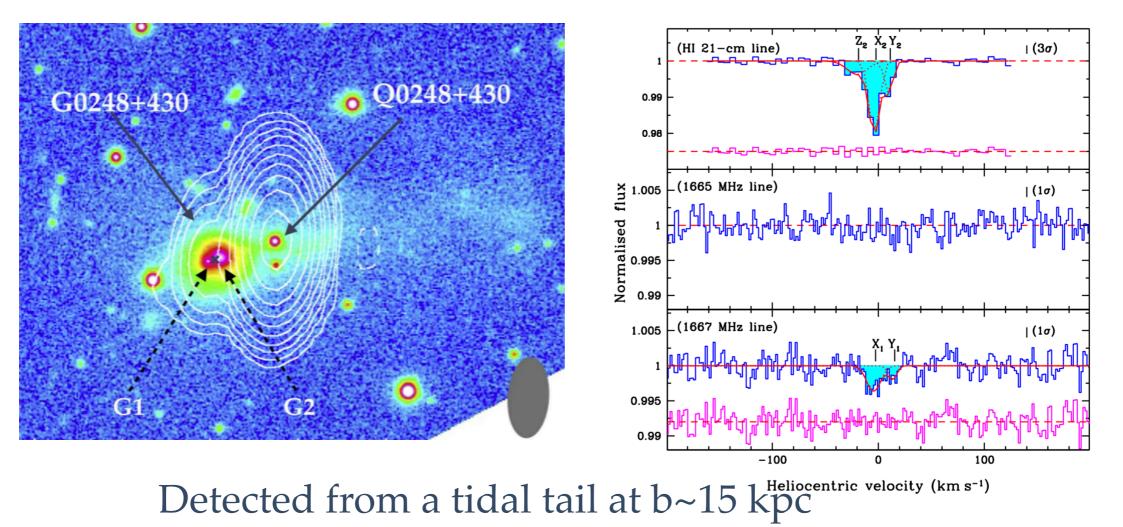
252 new RLQs: 102 at z>2.5 (Collaboration between IUCAA, Rutgers and South Africa)



SALT/NOT survey (Phase-I): uGMRT band-2,3 follow-up

SALT/NOT survey (Phase-I): uGMRT band-2,3 follow-up

THE ASTROPHYSICAL JOURNAL LETTERS, 860:L22 (6pp), 2018 June 20

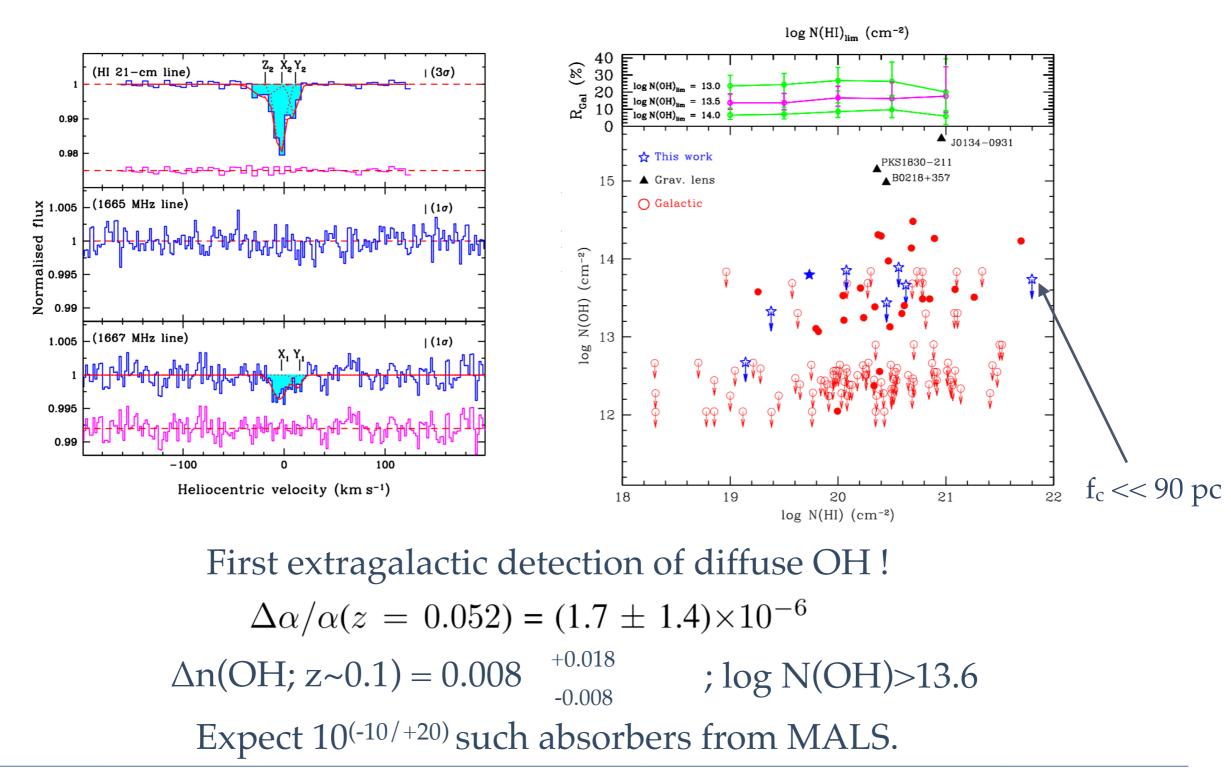

© 2018. The American Astronomical Society. All rights reserved.

Discovery of OH Absorption from a Galaxy at $z \sim 0.05$: **Implications for Large Surveys with SKA Pathfinders**

N. Gupta¹, E. Momjian², R. Srianand¹, P. Petitjean³, P. Noterdaeme³, D. Gyanchandani⁴, R. Sharma⁴, and S. Kulkarni⁴ Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007, India; ngupta@iucaa.in National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801, USA ³ UPMC-CNRS, UMR7095, Institut d'Astrophysique de Paris, F-75014 Paris, France ⁴ ThoughtWorks Technologies India Private Limited, Yerawada, Pune 411 006, India

Received 2018 March 16; revised 2018 May 22; accepted 2018 May 31; published 2018 June 18

OH in nearby galaxies


Quasar	Galaxy	$z_{ m q}$	$z_{ m g}$	$\int \tau dv(\text{HI})$	Ref.*	Peak flux	Spectral	Spectral	$\int \tau_{1667} dv (\text{OH})^{\diamond}$
				-		density	resolution	rms	-
				$({\rm km}{\rm s}^{-1})$		$(mJy beam^{-1})$	$({\rm km}{\rm s}^{-1})$	$(mJy beam^{-1})$	$({\rm km}{\rm s}^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
				Quasar-gala	xy pairs				
3C232	NGC3067	0.530	0.0049	0.11	1	1563	1.4	1.7	< 0.006
Q0248+430	G0248+430	1.313	0.0519	0.43	2	1207	1.5	2.1	0.08±0.01 §
J084957.97+510829.0	J084958.10+510826.6	0.584	0.3120	0.95	3	200	0.9	$3.9^{\dagger}, 4.4^{\ddagger}$	< 0.091
J104257.58+074850.5	J104257.74+074751.3	2.665	0.0332	0.19	5	295	1.5	1.5	< 0.027
J124157.54+633241.6	J124157.26+633237.6	2.625	0.1430	2.90	6	67	1.6	1.2	< 0.099
J124355.78+404358.5	124357.15+404346.5	1.520	0.0169	2.24	7	187	1.4	1.3	< 0.035
J144304.53+021419.3	Emission-lines	1.820	0.3714	3.38	3	144	2.0	1.4	< 0.059
J163956.35+112758.7	J163956.38+112802.1	0.993	0.0790	15.7	8	152	1.6	1.4^{\dagger}	_
				Merging gala	axy pair				
J094221.98+062335.2	-	-	0.1230	49.9	4	112	3.3	$1.1^{\dagger}, 1.0^{\ddagger}$	< 0.070

(Sample of 21-cm absorbers in nearby galaxies)

Observed with GMRT, JVLA and WSRT (typically 10 hrs/ per object)

OH absorption in G0248+430 (z=0.05)

Summary

- ◆ MALS LSP review completed: ~1650 hrs for HI+OH at z<2.
- Processing and Archiving infra in place:
 - ◆ DB and ARTIP-CUBE in advanced development stage.
- First commissioning observations done:
 - ◆Variable 21-cm absorption + one tentative detection.
 - ◆SKARAB 32K mode expected later this year.
- ♦ MALS SALT-NOT phase-I completed

 - ★ z: 2 5.2 coverage using uGMRT bands 2 and 3.
- First systematic OH search completed
 - ♦ Expect 10-30 diffuse OH absorbers from MALS.

MALS reference for details

http://adsabs.harvard.edu/abs/2016mks..confE..14G

