SHARP: Search for HI absorption with **APERTIF**

Raffaella Morganti, For SHARP: Filippo Maccagni, Tom Oosterloo, Robert Schultz, Suma Murthy

and the Apertif Imaging Team (led by Betsey Adams)

European Research Council

stablished by the Juropean Commission

from anywhere in the world

APERture Tile In Focus (APERTIF)

Can do in a day what before took a month Synergy with LOFAR

121 receptors (60+61) 39 beams on the sky FoV 6 deg² Range freq: 1130 – 1700 MHz $T_{\rm sys}$ 70 K Aperture efficiency 75% Bandwidth 300 MHz 24576 channels - 4-5 km/s resolution 12 dishes

APERture Tile In Focus (APERTIF)

Opening of Apertif on September 13, together with the celebration WSRT 50

Apertif Surveys

- definition driven by science AND efficiency
 - large-area shallow imaging survey 3500 deg²
 - medium-deep imaging survey 450 deg²
 - transient survey
 - will revisit strategy after 1 year.
 better to go deep or go for area?
 - lack of good optical data in part survey area

Starting of the Apertif surveys expected early 2019

~° s. R.A. (2000.0)

Organisation of the Apertif project

- Organisation different from others SKA pathfinders
- Low-budget project (in the "shadow" of LOFAR...)
- Imaging Team has to run the surveys, develop/run pipeline+quality control and ingest data in the archive -> and do the science!
- Requires commitment and resources -> level of participation linked to this

What we will do*

- Continuum (and polarisation) -> expected ~12 arcsec spatial resolution, ~20-30 microJy noise in the shallow survey)
- HI emission (largest science case/group) Awarfs, nearby galaxies (synergy with Manga and WEAVE-IFU), groups/interaction/environment ...
- HI absorption -> SHARP survey

*Imaging part, time domain PI Joeri van Leeuwen

Tracing HI with absorption: intervening and associated

Tracer of *cold* neutral hydrogen in the distant universe, can detect and

probe gas within **normal** galaxies out to very high redshift:

- Typical size and mass of galaxies as function of redshift → test galaxy formation scenarios
- Evolution of neutral gas content with redshift -> explore relation HI content and SFR

Tracer of the gas in the inner parts of the galaxy close to AGN

- Tracer of circumnuclear disks
- Infalling gas → feeding
- Outflowing gas → feedback

Plans for SHARP

• Piggyback on all Apertif surveys (maybe also from observations with poor imaging performances, i.e. during "transients" configuration or with no full-12h tracks \rightarrow mode transient&imaging simultaneously)

"Blind" unbiased search → extract spectrum for every continuum sources

interesting also for stacking

-> medium-deep survey will be used to explore a new parameter space: low HI optical depth and/or HI in low power sources

Cubes and continuum spatial res 12"

 \rightarrow shallow survey (12h each pointing), coverage to z=0.26 and noise ~0.5 mJy/b chan width 30 km/s \rightarrow down to at least 10 mJy \rightarrow optical depth $\tau \sim \Delta S_{abs}/S_{cont} = 0.15 (3\sigma)$

Velocity 2.4 km/s but we will smooth the extracted spectra to lower resolution (~30-50 km/s)

Advantages and disadvantages of SHARP

Apertif covers only low redshifts
Impact of RFI

+ Availability of SDSS for optical identifications (and WEAVE coming up)
+ Synergy with LOFAR
+ VLBI network (including eVLBI) for follow up

IMPORTANCE of SDSS

- Very important for associated absorption:
 - On 4000 sq deg > 10 mJy: ~1500 sources > 5 mJy: ~3000 sources (compared to the 248 from Filippo's sample)

searching sources at low radio flux means many more identifications

relevant for stacking...

Santoro 2018

Synergy with LOFAR

LoTSS - Tier 1 All-sky @ 150 MHz (HBA) 48 MHz bandwidth ~0.07 mJy median noise 6 arcsec resolution Synergy LOFAR-WEAVE

First data release HETDEX area (400 sqdeg)

Shimwell et al. 2018 "The LOFAR Two-metre Sky Survey -- II. First Data Release" A&A submitted Duncan et al. 2018 "The LOFAR Two-metre Sky Survey -- IV. First Data Release: Photometric redshifts and rest-frame magnitudes" A&A Williams et al. 2018 "The LOFAR Two-metre Sky Survey -- III. First Data Release: Optical identifications and Value-added catalogue" A&A

Changes since last year... The Apertif room!

Where are we now...

Element beams, 135 MHz, single polarisation, RT2-RTB

Compound beams RTC & RTD, 200 MHz Online calibration (real-time beam weights and

Dual (full) polarization Anti-aliasing 300 MHz

Continuous improvement of the data quality: phases remarkable stable making calibration relatively easy Currently commissioning instrument and pipelines

gain transfer between beams)

Imaging Pipeline: in progress and under commissioning

Miriad/python-based; runs in jupyter notebooks Developed by: Björn Adebahr, Brad Frank, Nicholas Vilchez (to be continued by: A. Kutkin) Under the supervision of T. Oosterloo (and based on work of P. Serra, G. Josza)

Archive: Hanno Holties's group (R&D)

Some highlights of the commissioning

HI channels of N5033 group

Frequency: 1414.600 MHz

► HI channels of M51

The Lockman hole area as "reference" field

LOFAR one pointing, Mahony et al. 2016

Some highlights of the commissioning: the Lockman hole area

LOFAR one pointing, Mahony et al. 2016

Some highlights of the commissioning: the Lockman hole area

- Continuum image Lockman Hole from a single pointing
- \rightarrow About one year ago: the first wide-field (~10 deg²) image taken using the individual PAF elements separately, a limited bandwidth (70 MHz)
- The noise in this image is 0.2 mJy/beam, and the final APERTIF system

Very relevant for SHARP: for every continuum source we want to extract the spectrum and look for HI in absorption while, at the same time, learn about the properties of the

NGC315 (Jan2018 - single pol, 135 MHz, 7 dishes)

Use to test Sharpener, tool to identify location of continuum sources and search for absorption features in the cube -> see talk of Filippo Maccagni

rms noise ~2 mJy/b chan=10km/s+Hanning

Pushing toward the lower frequencies → z=0.19

Now commissioning of the compound beams, polarisation, full array!

A number of new capabilities became available in the last weeks: too much data to digest!

...but some highlights:

Full polarisation: looking good (YY still to be improved)

12 dishes: we get full resolution images at ~12arcsec resolution Noise of compound beams: getting close to the expected noise \Rightarrow 1.5 mJy/b for chan of 10 km/s (in XX)

(about 10-20% higher than expected)

... looking promising, but only a limited range of frequencies possible (not the low-z Universe!) Limitation for early!

still a number of important issues to address before the surveys can start

Tools we need for the "blind" HI absorption surveys