

Outline

• Associated HI absorption.

• Low redshift studies.

• Scenario at high redshift.

• An associated H_I absorption survey.

• Initial results.

• Summary.

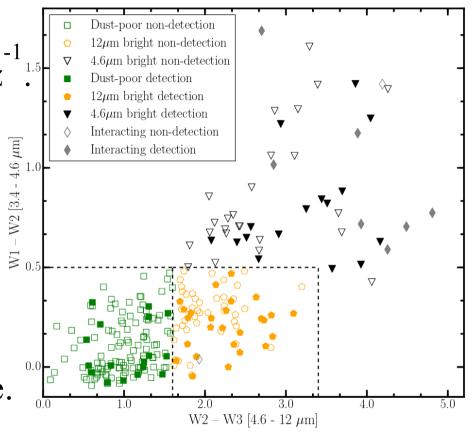
HI Absorption in Radio AGNs

- Gas accretion on to SMBH \Rightarrow AGN \Rightarrow Host galaxy evolution.
- Cold gas plays a role too.
- HI absorption: Cold gas at high-z and high spatial resolution.
- First detection of associated H_I absorption in Centaurus-A.

(Roberts 1970)

- Circumnuclar disks, turbulence, gas infall, outflow.

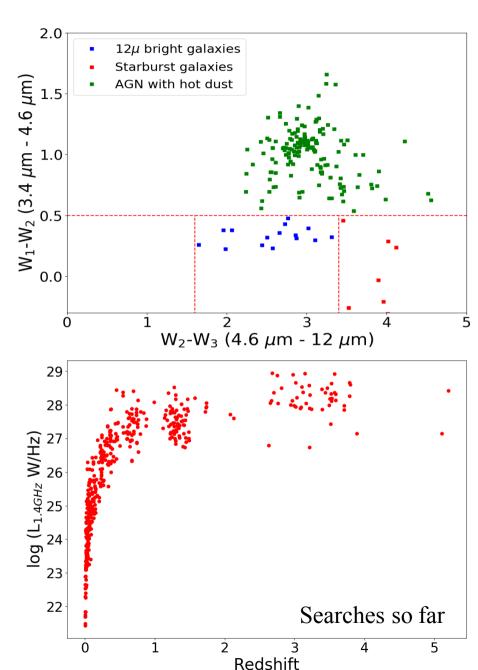
 (e.g. Taylor 1996, van Gorkom et al. 1989, Morganti et al. 2013)
- HI absorption in large samples \Rightarrow hints on feedback, feeding.


(e.g. Gereb et al. 2015)

Low-z HI absorption studies: WSRT Survey

(Maccagni et al. 2017)

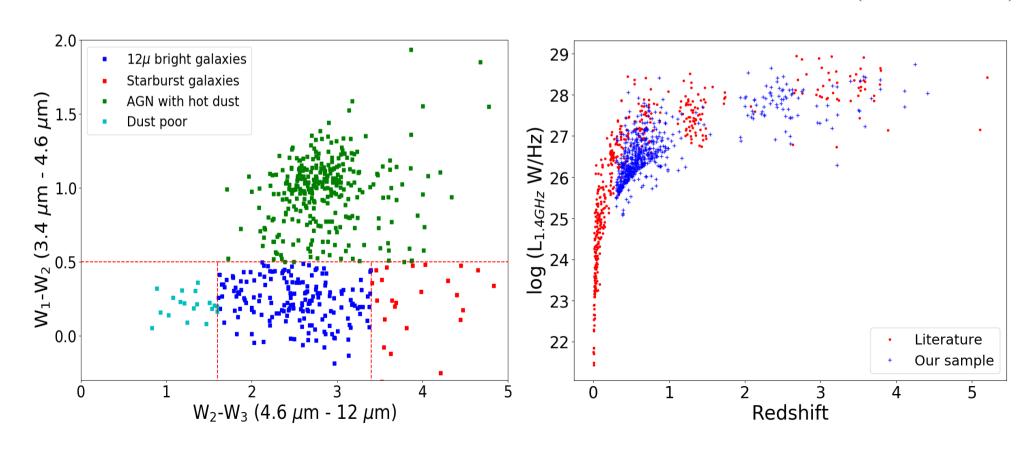
- 248 sources; 0.02 < z < 0.26.
- Radio luminosity: 10^{22} to 10^{26} W Hz
- Detection rates:
 - Compact sources: ~40%.
 - Old, extended sources: ~13%.
 - o Higher in hosts with dust.
- Overall detection rate of ~30% across redshift and luminosity range.
- Supports earlier hypotheses.


 (e.g. Gupta et al. 2006)
- All detected outflows in young, high power sources.
- HI in extended (old) radio sources: rotating disks.

Scenario at High Redshifts

- \sim 130 searches at z > 1; 7 detections.
- Detection rate: $\sim 5\%$:
 - Redshift evolution of cold gas?
 - High AGN Luminosity (UV and 1.4 GHz)?
- Uniform sample at all redshifts.

 (Aditya et al. 2016,17,18a,b)
- UV-faint objects at high redshifts. (Curran et al. 2013,16)
- Incidence of H_I absorption in different AGN classes?


An Associated Hi Absorption Survey: Sample

- 0.3 < z < 4.5; 1.4 GHz flux density > 70 mJy: 500 targets.
- SDSS, WiggleZ, VIPERS cross matched with FIRST at z < 2; ultra-steep spectrum sources at z > 2.

(Alam et al. 2015, Parkinson et al. 2012, Guzzo et al. 2014, de Breuck et al. 2016)

• 300 extended radio sources.

(Gereb et al. 2015)

The Pilot Study

- 17 targets with the uGMRT; $z \sim 0.9 2.5$.
- 3 compact and 11 extended objects.
- 1 1.5 hours on source.
- 3σ optical depth limits: 0.3% 1% per 100 km/s channel.
- Clean spectra for 14 objects.
- 1.4 GHz luminosity: 10^{26.5}–10^{28.5} W Hz⁻¹.
- Low UV luminosity.
- 5 tentative detections of associated H_I absorption.

Results

- If confirmed, number of detections at z > 2 doubled!
- Overall detection rate ~35%.
- Appears to be in agreement with low redshift studies!
- But the sample size needs to be increased.

Summary

- Associated H_I absorption \Rightarrow Interplay between gas and radio activity.
- Low redshift studies:
 - Overall detection rate: 30%.
 - Compact objects more likely to be detected (40% detection rate).
 - Outflows most likely in high power compact sources.
- Compact objects searched at high redshifts: not enough numbers and diversity.
- A huge heterogeneous sample at z > 0.3.
- Current focus on high-z and (relatively) low luminosity targets.
- 17 observed with the uGMRT in the on-going cycle.
- 5 tentative detections and 9 non-detections: detection rate ~36%.
- Present focus is on z > 1 and low luminosity objects.