The Future of the EVN and VLBI with the SKA

Zsolt Paragi JIVE

2018 August 29-31

The European VLBI Network

> Combining some of the most powerful telescopes in the world:

> To detect extremely weak signals, and image them at the highest detail

Science Highlights

2018 August 29-31

Fast Radio Bursts: EVN localization f the repeater FRB 121102

First ever VLBI detection of a millisecond-duration transient signal
 Required advanced features in the EVN Software Correlator at JIVE (SFXC)

Artist's impression: Danielle Futselaar

Wide-field VLBI of the HDF

Radcliffe et al. (2018)

Sensitive wide-field VLBI fully operational in the EVN (beam-correction applied)
 Made possible by multi-phase center correlation capability of SFXC

2018 August 29-31

The hunt for DM halos using gravitational lensing as a tool

- One of the sharpest images of a gravitationally lensed radio source: MG J0751+2716 (z = 3.2)
- Mass distribution of the foreground z = 0.35 gravitational lens is not smooth
- It is not clear yet whether this extra mass is in the form of sub-haloes within the lens or along the line of sight, or from a more complex halo of the galaxy group

Spingola et al. (2018)

2018 August 29-31

Stellar death near SMBH in Arp299B

First detection of resolved ejecta from a jetted Tidal Disruption Event
 TDE detected in IR rather than in X-rays: thick torus absorbing/re-radiating X-ray flare?

2018 August 29-31

EVN: future directions

Jumping JIVE project WP7 "Future of VLBI"

2018 August 29-31

EVN Vision Document

SECTION I - THE LANDSCAPE OF THE PRESENT AND FUTURE OBSERVING FACILITIES

I.1 Present and future VLBI arrays and radio facilities I.2 Present and future space and ground observatories at other wavelengths

SECTION II - SCIENTIFIC ROADMAP FOR THE NEXT DECADES

II.1 And there was light (cosmology)
II.2.1 When monsters were born (galaxy formation; AGN feedback)
II.2.2 AGN/BH evolution through cosmic time
II.3 Towards the Horizon (mm-VLBI, jet formation)
II.4 Inferno (explosive phenomena/transients)
II.5 Stars and life (stars, stellar evolution and planetary systems formation)
II.5.1 Stellar maser
II.5.2 Stellar radio continuum and planetary systems
II. 6 Innovative applications
II.6.1 Astrometry, Earth and Celestial Reference Frames
II.6.2 Space Science developments

SECTION III - The future of VLBI and the EVN

III.1 New technological developments III.2 VLBI & synergies in the next decade

2018 August 29-31

EVN Vision Document

SECTION II - SCIENTIFIC ROADMAP FOR THE NEXT DECADES

II.1 And there was light (cosmology)

II.2.1 When monsters were born (galaxy formation; AGN feedback)

II.2.2 AGN/BH evolution through cosmic time

Any contribution to the science case is welcome:

- What are the major science drivers of HI absorption VLBI science in the coming decades?
- How shall we address these?

Contact:

Raffaella Morganti, Robert Schulz (ASTRON)

2018 August 29-31

HI VLBI: pushing the limits

 $N_{\rm HI} = 1.8 \times 10^{18} T_{\rm spin} \tau_{\rm peak} FWHM_{\rm line} \rightarrow \text{few } 10^{20} - 10^{21} \text{ cm}^{-2}$ $(100 \text{ K}; 0.02 - 0.05; 100 \text{ km/s}) \qquad (4.6 \times 10^{21} \text{ cm}^{-2} \text{ in } 4\text{C } 12.50)$ $[N_{\rm HI} \text{ detection limit presented here last year, using sensitivities of EVN and EVN+FAST or EVN+SKA1-MID]}$

Young radio source in an ULIRG, 4C12.50 at z=0.1217 Morganti et al., Science, 341, 1082, 2013

- > Need additional big dishes to reach beyond $N_{\rm HI}$ limit of ~10²⁰ cm⁻²
- > Must improve v < 1.2-1.3 GHz coverage to reach beyond $z \sim 0.1-0.2$
- Combine with e-MERLIN/MeerKAT short spacings to map extended outflows

2018 August 29-31

MeerKAT - EVN fringes

2018 August 29-31

VLBI with the Square Kilometre Array

> Ultra-sensitive VLBI allowing access to the Galactic Centre and the Souther Sky

"Very Long Baseline Interferometry with the SKA", Paragi et al. 2015, SKA Science book (Mainly focusing on SKA1-MID)

2018 August 29-31

VLBI with the Square Kilometre Array

VLBI Scientist at the SKA HQ

Jumping JIVE project WP10 "SKA-VLBI" funded position
 Cristina Garcia-Miro started 1 August 2017

2018 August 29-31

VLBI with SKA1-LOW

> HI absorption systems at high redshift

- To resolve background source or absorber
- **HPSO#13** for MID; complementary work on LOW

Pulsar scintillometry

- ISM as 10-50 AU scale interferometer (picoarcsec resolution)
- Parallax distance (related to HPSO#4 on pulsar timing)
- > AGN jet termination hot-spots with VLBI to reveal their physics

Transient localization

• Localize FRB within the host galaxy with ~40 mas resolution (**HPSO#18**)

VLBI with SKA1-MID

Pulsar astrometry: HPSO#5

- Multi-beam calibration, precision ~10 µas and below!
- Requires Band 5 for GC pulsars

Proper motion and parallax of stars/clusters: HPSO#26

- <u>Methanol maser</u> for high-mass, continuum for low-mass
- 6D tomography of spiral arms

HI absorption: HPSO#16

- AGN feedback, Band 2, 1
- Continuum surveys
 - AGN vs. (nuclear) SF beyond *z* > 0.1
 - Cosmology with gravitational lensing

Transient localization and imaging, HPSOs#18-19

- Synchrotron (galactic/extragal), ToO, trigger
- Localize FRB within their host on sub-pc scales

VLBI with SKA1-MID

Commensal modes and VLBI with SKA1-MID

Band	VLBI + coarse Vis	Imaging	PSS	PST	Zoom
Band 1 (0.35-1. 05GHz)	4b full (8 FSP)	Full (4 FSP)	1500b 300MHz (8 FSP)	16b (4 FSP)	2 (2 FSP)
	4b 512MHz (6 FSP)	Full (4 FSP)	1500b 300MHz (8 FSP)	16b (4 FSP)	4 (4 FSP)
Band 2 (0.95-1. 76GHz)	4b full (10 FSP)	Full (5 FSP)	1500b 300MHz (8 FSP)	16b 600 MHz (3 FSP)	0
	4b 512MHz (6 FSP)	Full (5 FSP)	1500b 300MHz (8 FSP)	16b (5 FSP)	2 (2 FSP)
Band 5a/b (4.6-8.5 GHz & 8.3-15.3 GHz)	2b 5GHz (26 FSP)	0	0	0	0
	4b 2.5GHz (26 FSP)	0	0	0	0
	4b 512MHz (6 FSP)	512MHz (3 FSP)	1500b 300MHz (8 FSP)	16b 512 MHz (3 FSP)	6 (6 FSP)

> Since time for VLBI with SKA1 will be limited, commensal options have to be explored

> Frequency slice architecture allows for full commensality in Band 1—2 for HI VLBI

2018 August 29-31

Final notes

- EVN is an excellent instrument for spectral line VLBI research, but the low-frequency coverage for z >0.1 observations must be improved
- > JIVE supports your research in all steps from putting together the proposal to get the data reduced (and even with the PR, following the publication)
- Prospects for HI VLBI with SKA1-MID look good. Jumping JIVE WP10 supports the realization of VLBI modes and helps the community to define VLBI-related Key Science Programmes:
- We plan to organize dedicated SKA-VLBI KSP workshop in the fall of 2019 at the SKA HQ