#### The ASKAP FLASH survey in 2019: Progress and challenges

Elaine M. Sadler ASTRO 3D/University of Sydney/ CSIRO





#### AJIKU JU Overview

What I'll talk about:

- Motivation for the FLASH survey, and the 2009 survey plan
- Challenges for 'blind' large-area surveys
- What we've learned so far
- MWA IPS results, and relevance to the FLASH survey
- Next steps with ASKAP

Collaborators in this research include:

James Allison, Stephen Curran, Sara Ellison, Bjorn Emonts, Katinka Gereb, Marcin Glowacki, Elizabeth Mahony, Raffaella Morganti, Vanessa Moss, Sarah Reeves, Matt Whiting, Martin Zwaan

and members of the ASKAP FLASH and ACES teams

### Why a radio 21cm HI absorption survey?

Motivation: Use 21cm HI absorption to probe neutral atomic hydrogen in distant galaxies - unlike HI emission, *sensitivity is independent of z* 



**Intervening absorbers:** Cosmic evolution of HI in galaxies Associated absorbers: AGN fuelling and feedback

ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

**HOLKU OD** 

#### HOIKO OD

### FLASH: The First Large Absorption Survey in HI



#### **FLASH Team:**

50 members from 24 institutions in 10 countries

PIs : James Allison (Oxford) Elaine Sadler (Sydney)



#### Our goal:

- Use ASKAP to probe the neutral hydrogen (HI) content of individual galaxies in the redshift range
  0.4 < z < 1.0 (look-back time 4-8 Gyr)</li>
- Test current galaxy evolution and mass assembly models in this redshift range

ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

http://www.physics.usyd.edu.au/sifa/FLASH

### The advantages of ASKAP



#### ASKAP's

- Wide field of view
- Wide spectral bandwidth
- Radio-quiet site

make it possible to carry out the first <u>blind large-area radio survey for HI</u> <u>absorption</u>

<u>Strategy:</u> **All-sky survey in HI absorption!** In 2-3 months of observing time, FLASH can target over 150,000 sightlines to bright background continuum sources across the whole southern sky - *an increase of more than two orders of magnitude over previous 21cm HI absorption searches.* 

ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

**HOLKO OD** 

Optical: Damped Lylpha Absorbers



DLAs: Intervening absorbers with high HI column density ( $N_{HI} > 2 \times 10^{20} \text{ cm}^{-2}$ ). Equivalent width of Lyman- $\alpha$  line gives a **direct measurement** of HI column density  $N_{HI}$ .

ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

**HOLKO OD** 

**HOLKO DD** 

#### Neutral gas and galaxy evolution



7

# What do we expect to see?

FLASH survey science proposal 2009

Intervening 21cm absorbers:

• **Probability** of intercepting a DLA system with  $N_{HI} > 2 \times 10^{20} \text{ cm}^{-2} \text{ is}$ dN/dZ = 0.055 (1+z)<sup>1.11</sup> (Storrie-Lombardi & Wolfe 2000)

*i.e.* 6% for a sightline in the 700-1000 MHz ASKAP band (0.4 < z < 1.0)

- Optical depth of these lines is expected to be ~1.5% for a minimal DLA and 10% or higher for sightlines with much higher HI column density (Braun 2012)
- **Surface density** (and approximate redshift distribution) of suitably bright background continuum sources is already known

Implies that an all-sky 21cm HI absorption survey with ASKAP is feasible, and should yield several hundred detections of intervening lines

ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

**AOLKO OD** 

#### HOIKO OD

### Technical requirements (2009 proposal)

|                                 | FLASH         | WALLABY<br>piggyback |
|---------------------------------|---------------|----------------------|
| Survey area (deg <sup>2</sup> ) | 25,000        | 20,000               |
| Observing freq. (MHz)           | 700-1000      | 1130-1430            |
| HI redshift range               | 0.4 < z < 1.0 | 0 < z < 0.26         |
| Angular resol. (arcsec)         | 30            | 30                   |
| Spectral resol. (kHz)           | 18            | 18                   |
| Bandwidth (MHz)                 | 300           | 300                  |
| Integration time per field (hr) | 2             | 8                    |
| Total obs. time (hr)            | 1600          | (9600)               |
| Expected detections             | ~470          | ~480                 |

**Also:** Need the final calibrated channel-to-channel spectral response over the bandpass to be uniform to within 0.5%

29 August 2018

### Challenges for large multi-object HI surveys

**Challenge 1:** Linking observed optical depth ( $\tau$ ) to HI column density (N<sub>HI</sub>) – need to know Tspin, *f* 



**Challenge 2:** Redshifts (and structures) of individual continuum sources are generally unknown

- How many are background sources?
- What is the typical covering factor?

# ASTRU JU

### Timeline

| Period    | Activity                                                                                             |          |                     |
|-----------|------------------------------------------------------------------------------------------------------|----------|---------------------|
| 2009-2010 | Proposal submitted, FLASH selected as one of 10<br>ASKAP Survey Science Teams                        | )        |                     |
| 2011-2014 | Development of line finder and analysis pipeline,<br>tests with ATCA at z < 0.12, HIPASS line search |          | This talk           |
| 2015-2017 | Commissioning observations with 6-12 ASKAP antennas (1-9 beams), bright targets                      |          |                     |
| 2018      | Early Science observations (12 antennas, 36 beams), measure all bright sources in field              | Ja<br>ta | mes Allison's<br>Ik |
| 2019      | ASKAP Pilot surveys (36 antennas, 36 beams, 200hr), all sources in field                             |          | Next                |
| 2020      | Start full FLASH survey                                                                              |          | steps               |

# Testing the automated line finder

ATCA observations 2011-13: HI absorption in nearby compact radio sources



ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

**HOLKO OD** 

ATCA: low-redshift intervening lines

Sarah Reeves PhD thesis: Background radio sources behind 16 nearby gas-rich galaxies from HIPASS, impact parameter < 20 kpc



# Searching for **intervening** absorption in nearby spiral galaxies with detected HI emission

(Reeves et al. 2015, 2016)

ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

**HOLKO OD** 

### HOIKU JU

### The effects of background source structure

- Observed **16 galaxies**, with **23 sightlines** to background continuum sources
- Background continuum sources generally unresolved in SUMSS (45 arcsec beam)
- ATCA observations map HI emission, provide HI column density contours
- 7 arcsec ATCA beam for continuum sources

#### Results:

- 14/23 sightlines missed the HI disk Of the 9 sightlines that intersected an HI disk:
- 5/9 continuum sources were resolved by ATCA (i.e ~50% of sources had lower peak flux density than expected)
- 3/9 objects were bright sources with no detected line (Tspin/f >> 100 K)
- 1/9 with detected absorption (NGC 5156)





(Reeves et al. 2016)

HOIKU JU

### HI absorption in a nearby spiral: NGC 5156



ASKAP commissioning data



.

**ASIKU JU** 

E. Sadler, HI Absorption 2018

#### New HI detections (ASKAP commissioning)

**AOTKU JU** 



### ASKAP pilot intervening source sample

#### ASKAP commissioning observations 2016-17 (with 6-12 antennas)

#### Radio flux-limited sample of 53 sources:

- Flux density > 1.5 Jy at 1 GHz and > 0.5 Jy at 20 GHz
- Redshift z > 0.4 *or* no published z
- Declination south of 0 deg
- Many with 8 GHz VLBI images (Ojha et al. 2010)

#### **Redshift distribution:**

- 35 with z > 1.0
- 14 with 0.4 < z < 1.0
- 4 with no reliable redshift

Total redshift path length  $\Delta z = 21.4$ 



Detection limits in HI column density



*Optical depth and HI column density:* 

$$\label{eq:tau} \begin{split} \tau \propto N_{HI}/\textit{f.}~T_{s}\text{.}~\Delta V \text{ for} \\ \text{observed optical depth } \tau, \ \text{line} \\ \text{width}~\Delta V \end{split}$$

Probability of intercepting a DLA system ( $N_{HI} > 2 \times 10^{20} \text{ cm}^{-2}$ ) on a random sightline:

 $dN/dZ=0.055 (1+z)^{1.11}$  (Storrie-Lombardi & Wolfe 2000)

i.e. ~6% for z=0.7, 300 MHz

**HOLKO OD** 

#### New intervening detection: PKS 1610-77



http://www.wallen.com//www.wallen.com//www.allen.com//www.allen.com//wallen.com//wallen.com//wallen.com//wallen.com//

#### HOIKO OD

### Gallery of intervening 21cm HI lines



#### Spin temperature estimate



Can estimate a characteristic **spin-temperature** based on number of intervening lines detected so far. (Allison et al. 2016)

<u>At z ~ 0.7</u>, estimate: Typical Ts ~ 200K, CNM fraction ~ 40%

Similar to Milky Way values!

Estimated HI column density

|                                                                 | z (abs) | N <sub>HI</sub> (T <sub>s</sub> =100K) | N <sub>HI</sub> (T <sub>s</sub> =300K) |
|-----------------------------------------------------------------|---------|----------------------------------------|----------------------------------------|
| PKS 0834-20                                                     | 0.591   | 1.3 x 10 <sup>21</sup>                 | 3.9 x 10 <sup>21</sup>                 |
| PKS 1229-02*                                                    | 0.395   | 8.2 x 10 <sup>19</sup>                 | 2.5 x 10 <sup>20</sup>                 |
| PKS 1610-77                                                     | 0.452   | $4.1 \times 10^{20}$                   | $1.2 \times 10^{21}$                   |
| PKS 1830-211                                                    | 0.886   | $2.0 \times 10^{21}$                   | $6.0 \times 10^{21}$                   |
| PKS 2223-05                                                     | 0.702   | 1.4 x 10 <sup>19</sup>                 | 4.5 x 10 <sup>19</sup>                 |
| (Assumes f = 1, uncertainties on N <sub>HI</sub> are up to 20%) |         |                                        |                                        |

i.e. Reasonable to assume that four of these absorbers have HI column densities as high as those of optical QSO DLA systems ( $N_{HI} > 2 \times 10^{20} \text{ cm}^{-2}$ )

HI DLA number density at z ~ 0.7

Preliminary result! 53 bright QSOs observed, redshift path length  $\Delta z \approx 21.4$ , five 21-cm lines detected (four with DLA-like column densities)



**HOLKO OD** 

### **Readiness checklist**

Methodology:

**YOLKO OD** 

- 1. Automated line finder checked and working well
- 2. Uniformity and stability of ASKAP spectral bandpass excellent!
- **3. ASKAP sensitivity** rms noise/spectral channel is ~50% higher than 2009 prediction
- **4. Detection rate** of intervening HI lines against bright compact sources at least as high as predicted

i.e. The FLASH survey originally proposed in 2009 is feasible as specified, possibly with increased integration time to compensate for slightly higher Tsys

**HOLKO DD** 

#### Interpreting the data

Challenge 1: Linking observed optical depth ( $\tau$ ) to HI column density (N<sub>HI</sub>)



ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

#### Possible strategies:

- **Ly-**α **spectroscopy** (HST, UVbright QSOs)
- Empirical N<sub>HI</sub> estimates (Braun 2012)
- **Statistica**l T<sub>s</sub> estimates (Allison et al. 2016)
- VLBI imaging of sub-samples to estimate *f*
- Modelling of full sample (SAM, hydro)

#### PKS 1229-02 – Tspin from HST DLA





**PKS 1229-02:** ASKAP re-discovery of known HI line at z=0.395 (Brown & Spencer 1979), MgII absorber seen in optical QSO spectrum. Boisse et al. (1998) measured N(HI) =  $5.6 \times 10^{20} \text{ cm}^{-2}$ from HST Ly  $\alpha$  line

ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

For covering factor f = 0.42 (Kanekar et al. 2014), derive: Tspin = 286 K (+/-  $\sim$ 20%) for PKS 1229-02 intervening galaxy at z=0.395 HOIKU OD

### N(HI) estimates for PKS 1229-02

#### **Measure:** integrated optical depth of 0.45 ± 0.05 km/s

| Technique                                              | Derived HI column<br>density                                                                                             | Notes                                             |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| <b>HST UV</b> : Ly- $\alpha$ line (Boisse et al. 1998) | 5.6 x 10 <sup>20</sup> cm <sup>-2</sup>                                                                                  | For <i>f</i> =0.42, derive<br>Ts= 286 K (+/- 20%) |
| <b>Empirical</b> estimate<br>(Braun 2012)              | ~ 4 x 10 <sup>20</sup> cm <sup>-2</sup>                                                                                  | Uses only the peak optical depth                  |
| <b>Statistical</b> estimate (Allison et al. 2016)      | 1.6 x 10 <sup>20</sup> cm <sup>-2</sup> ( <i>f</i> =1.0)<br><b>3.9 x 10<sup>20</sup> cm<sup>-2</sup> (<i>f</i>=0.42)</b> | Based on estimated<br>Ts=200 K                    |

i.e. For this object - reasonable consistency between empirical/statistical estimates of N(HI) and the value measured from Ly- $\alpha$ 

### Interpreting the data

Challenge 2: Redshifts and small-scale structure of individual background continuum sources usually not known beforehand



Predicted redshift distribution for continuum sources brighter than 50 mJy at 843 MHz, from the SKADS simulated sky (Wilman et al. 2008)

#### Follow-up strategy (redshifts):

- Refine characteristic redshift distribution (esp. at z > 0.7)
- Optical/ALMA CO spectra of individual detections where possible
- Photo-z estimates
- Machine learning: separate intervening and associated lines (Curran et al. 2016)
   Follow-up strategy (source structure):
- Use radio spectral index as proxy for source compactness
- **MWA IPS survey** can identify bright compact sources

#### Photometric redshift estimates for radio AGN



New: Wide-field interplanetary scintillation

#### **Interplanetary Scintillation (IPS):**

- Density fluctuations in the solar wind produce random fluctuations in the intensity of compact radio sources on *timescales of a few seconds*
- For MWA, IPS is seen for sources with angular size smaller than 0.5 arcsec at 150-200 MHz if observed within ~30 degrees of the Sun
- Potentially a powerful tool for identifying large numbers of young and very distant radio galaxies





ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

**HOLKU OD** 

New: Wide-field Interplanetary Scintillation



# **Movie credit:** Rajan Chhetri and John Morgan (Curtin University)

ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

Shown here: 100 x 0.5s, 75 deg<sup>2</sup> field (full MWA field is 900 deg<sup>2</sup>)

29 August 2018

**AOIKU JU** 

### Wide-field IPS surveys with MWA

#### Scintillating source (compact)



#### Non-scintillating source



ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

**First results:** (Morgan et al. 2017, Chhetri et al. 2017, Sadler et al. 2018)

- Around 12% of bright MWA GLEAM sources show strong IPS at 200 MHz
- Peaked-spectrum sources (not QSOs) are the dominant population of compact sources at low radio frequencies
- Strongly-scintillating sources are typically **distant** (median z ~ 1.5), with at least 30% at z > 2
- At z < 1, many show HI absorption

**Work in progress:** All-sky IPS survey with MWA will be able to characterise the compactness of all bright southern radio sources

#### Simulations: FLASH-Genesis workshop, Feb 2018



ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

ASTRO 3D

Genesis simulations (with Claudia Lagos, Chris Power and Lilian Garratt-Smithson, UWA) – first detailed simulations of HI absorption in distant galaxies

See Lilian's short talk

# Summary and next steps

Results so far:

**AOLKO OD** 

- Successful ASKAP detection of 21cm absorption in galaxies at z > 0.4, at or slightly above the expected rate for intervening systems
- Spin temperature of the cool ISM in HI-selected galaxies at z ~ 0.7 appears broadly similar to that of the Milky Way disk
- Also, many detections of **associated HI absorption** at 0.4 < z < 1
- Follow-up observations in progress with 8m telescopes, ALMA

Next steps:

Results so far mainly for single, fairly compact sources, next step is full fields with multiple sources (~150/field)

- 2019 onwards: Large-area survey with full ASKAP (36 antennas)
- Optical/CO/VLBI follow-up for larger samples
- Modelling of results (with ASTRO 3D Genesis team), tests of galaxy evolution models