

The University of Manchester

Ultra-Wideband Observations of Pulsars

Tom Hassall

Supervisor: Ben Stappers

LOFAR PWG: J. Hessels, A. Alexov, T. Coenen, A. Karastergiou, V. Kondratiev, M. Kramer, J. van Leeuwen, J. D. Mol, A. Noutsos, J. Romein, C. Sobey, J. Verbiest, P. Weltevrede

Observations

LOFAR LBA LOFAR HBA The Lovell The Effelsberg (DE601)

(CS302)

60MHz 36MHz bandwidth

I63MHz 48MHz bandwidth

I524MHz 512MHz bandwidth

Telescope

Telescope

8350MHz 1000MHz bandwith

Using LOFAR to probe the ISM

- Dispersion
- Refractive index of the interstellar medium is frequency dependent
- Light travels slower at low frequencies
- Simple relationship to predict dispersive delay at a given frequency:

$$\Delta t_{\rm DM} = \frac{\rm DM}{2.41\times 10^{-4}\nu_{MHz}^2}$$

 Drake et al 1968 showed that this holds to I part in 3000 at 40 MHz

Using LOFAR to probe the ISM

- Dispersion law scales as V⁻²
- But there are many other effects with steep frequency dependencies which are potentially detectable (e.g. Cordes & Shannon 2010)
- LOFAR is the best instrument to detect delays like these

Scattering

- Light is scattered in random directions by ISM
- More scattering
 => longer path length
- Takes longer to arrive
- Also less likely to happen

Multipath DM Averaging

Refraction

2 $\Delta t_{ref} \sim 167 \text{ DV}^{-4} \left(\frac{d \text{Ne}(x)}{dx} \right)$

Foster & Cordes 1990

Extra DM Terms

• DM law is a Taylor series expansion

• Next term :

 $\Delta t_{2DM} = 0.25 \text{ EM } v^{-4}$

- This can be used to determine the Emission Measure (EM = $\int n_e^2 dI$)
- A probe of the "clumpiness" of the ISM

Aligning the Profiles

- De-disperse and fold data
- Cross correlation with a template
- Find peak of CCS and convert to TOA
- Subtract model
- Residuals

Aligning the Profiles

The Problem...

- Pulse profiles change with frequency
- Ahuja et al 2007 found that this can impose a gradient on the cross correlation phase spectrum
- The different shapes introduce systematic errors to our TOAs

The Solution...

- Fit the profile at different frequencies with gaussians
- Determine how the profile evolves
- Use this to produce templates to time with

Aligned Profiles

The Interstellar Medium

- We can set limits on the properties of the ISM
- It appears to be relatively smooth
- Extrapolating to higher V shows that the ISM should not have a large effect on pulsar timing data (for these pulsars at least...)

Delay	DM	SM	$\frac{d}{dx}N_e(x)$	EM
(ms)	$(pc cm^{-3})$	$(\rm kpc \ m^{-20/3})$	$(pc cm^{-3} AU^{-1})$	$(pc cm^{-6})$
1.95	26.764	< 0.25	$< 5.3 \times 10^{-5}$	< 42000
3.84	5.733	< 1.02	$< 1.2 \times 10^{-4}$	< 82000
1.05	4.845	< 0.32	$< 6.7 imes 10^{-5}$	< 22000
0.84	12.437	< 0.155	$<4.4 imes10^{-5}$	< 18000
	Delay (ms) 1.95 3.84 1.05 0.84	$\begin{array}{c c} \text{Delay} & \text{DM} \\ \hline \text{(ms)} & (\text{pc cm}^{-3}) \\ \hline 1.95 & 26.764 \\ \hline 3.84 & 5.733 \\ \hline 1.05 & 4.845 \\ \hline 0.84 & 12.437 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

The Pulsar Magnetosphere

Dipolar Magnetic Field

Emission traces last open field line

Radius-to-Frequency Mapping

High Frequency Emission comes from Lower in the magnetosphere than low frequency emission

Aberration and Retardation

RFM→ High Frequency Emission comes from Lower in the magnetosphere than low frequency emission

Retardation

Aberration

Beam bent forward due to co-rotation

Path length difference

Cordes 1978, Phillips 1992

Aberration and Retardation

 $\mathbf{t}_{\mathsf{AR}} = \frac{\Delta r}{c} (1 + \sin \alpha)$

	Delay	α	ΔR
	(ms)	(°)	(km)
B0329 + 54	0.65	30.8	< 128
B0809 + 74	1.28	0.0^{b}	< 384
B1133 + 16	0.35	51.3	< 59
B1919 + 21	0.28	45.4	< 49

- Emission all comes from a surprisingly narrow range in the magnetosphere
- Within a few stellar radii of the neutron star surface

Conclusions

- Pulse profile evolution can cause (large) errors in TOAs
- Using a frequency dependent model can reduce these errors
- ISM should not cause too many problems at pulsar timing frequencies
- Non-detection of A/R effects shows that pulsar emission comes from a very narrow range of heights in the magnetosphere