

Searching for Magnetic Fields at Low Frequencies: Early Observations with LOFAR on M51 & NGC4631 **David Mulcahy**

On behalf of the Magnetism KSP

DFG Research Unit 1254

- Magnetization of Interstellar and Intergalactic Media – The Prospects of Low-Frequency Radio Observations
- Active since summer 2010
- 10 PhD students & 2 postdocs are currently active
- 1 dedicated project on LOFAR commissioning (see Andreas' talk)

MKSP galaxies & commissioning working groups

- Björn Adebahr Ruhr-Universität Bochum, Germany
- Mike Bell MPA Garching, Germany
- Krzysztof Chyzy Jagiellonian University, Poland
- Robert Drzazga Jagiellonian University, Poland
- René Giessübel MPIfR, Germany
- George Heald ASTRON, Netherlands
- Andreas Horneffer MPIfR, Germany
- Wojciech Jurusik Jagiellonian University, Poland
- David Mulcahy MPIfR, Germany
- Blazej Nikiel-Wroczynski Jagiellonian University, Poland
- Carlos Sotomayor Ruhr-Universität Bochum, Germany

Current Work

- Determining the best & most efficient method of calibration.
- Most ideal imaging parameters for extended emission is being investigated.
- Searching for optimal polarized calibrators: →Pulsars with a non-zero Faraday depth
- Investigating the properties of the lonosphere.

NGC4631 Details

- Edge-on spiral galaxy at a distance of approx 6.7 Mpc.
- Has the largest Radio Halo observed thus far, with a scale height of approximately 2.5kpc.
- The scale height of the total magnetic field is approx 10kpc.
- Radio Halo above the inner disk is composed of magnetic spurs connected to starforming regions in the disk, likely dragged by a strong galactic wind.

Marita Krause

• Ideal target for LOFAR observations

NGC4631 LOFAR Observation Details

- Observed with LOFAR HBA (110-240MHz)
- Observed for 7 hours
- Dual-beam observation, half of the beamlets pointed at one source hence only half of the subbands can be used.
- Observed calibrator 3C286 simultaneously
- Same frequency coverage on both source & calibrator
- 122 frequency channels of 210 KHz for source & calibrator.

Flagging Data

Flaggad Data

Robert Drzazga

NGC4631

LOFAR Observation – Classical SelfCal Calibration

Calibration in BBS on a single source 4C+32.40 with a total flux density of 3.2 Jy at 157MHz (Single Subband), followed by two cycles of self-calibration. Briggs weighting: robust = 1.0

N4631 LOFAR @ 150 MHz, 0.2 MHz bandwidth

NGC4631 LOFAR Observation – Transfer of Gain Solutions

Calibrated 3C286 first and then transferred the obtained Gain Solutions to NGC4631. Above image: robust = 0; 30" taper; no cleaning.

WIDEFIELD

George Heald

NGC4631 LOFAR Observation – Transfer of Gain Solutions

Images were produced after self cal and removing 3 brightest sources in the field using direction-dependent gains.

Overlaid onto HALOGAS Image

George Heald

LOFAR Observation – Transfer of Gain Solutions

Images were produced after self cal and removing 3 brightest sources in the field using direction-dependent gains.

LOFAR contours onto HALOGAS- 1.4GHz continuum survey with WSRT

Closeup: Overlaid onto Optical Image

George Heald

Images were produced after self cal and removing 3 brightest sources in the field using direction-dependent gains.

M51

- M51 is a grand-design spiral galaxy with two very prominent spiral arms.
- Perturbed by its close companion NGC5195 which may have resulted in two systems of density waves.
- Orientation of the magnetic field lines follow very closely the spiral arms. (Berkhuijsen et al. 1996, Patrickeyev et al 2006, Fletcher et al. 2011)

Fletcher, Beck et al (2011)

M51 LOFAR Observation Details – Transfer of Gain Solutions

- Observed calibrator 3C295 simultaneously.
- Same frequency coverage on both source & calibrator.
- 121 frequency channels of 210 kHz for source & calibrator.
- Calibrator 3C295 was calibrated and the Gain solutions were transferred to M51.
- Shown right is Subband 60 at 139.06MHz; widefield view
- Natural weighting used

- Robust Weighting of 0.25 was used to produce image to the right.
- Single Subband at 145.7 MHz

- Robust Weighting of 0.25 was used to produce image to the right.
- Single Subband at 145.7 MHz
- Due to uv-coverage, beam is quite elliptical

- Robust Weighting of 0.25 was used to produce image to the right.
- Single subband at 145.7 MHz
- Due to uv-coverage, beam is quite elliptical
- Left spiral arm can be seen.

- Robust Weighting of 0.25 was used to produce image to the right.
- Single subband at 145.7 MHz
- Due to uv-coverage, beam is quite elliptical
- Left spiral arm can be seen.
- As well as sections of the right spiral arm.

- Robust Weighting of 0.25 was used to produce image to the right.
- Single subband at 145.7 MHz
- Due to uv-coverage, beam is quite elliptical
- Left spiral arm can be seen.
- As well as sections of the right spiral arm.
- Base contour is at the 3 sigma level.

- Robust Weighting of 0.25 was used to produce image to the right.
- Single subband at 145.7 MHz
- Due to uv-coverage, beam is quite elliptical
- Left spiral arm can be seen.
- As well as sections of the right spiral arm.
- Base contour is at the 3 sigma level.
- Large Halo can also be seen!

Spectral Index Maps of M51

- At low frequencies, one expects a lower thermal fraction and older CR electrons; therefore a steeper spectral index.
- There should be spectral variations between arm & interarm regions and between disk & halo.
- Shown right is the spectral index between wavelengths 20-6cm from Fletcher et al (2011).

Spectral Index

-2

-2.5

-3.5

-3

 $^{-4}$

Spectral Index Map:

-1.5

- Greatest frequency separation used
- Uniform weighting used
- Remote stations removed
- Same uv-range for each subband.
- Region cutoff is 3o of higher frequency subband.

The Halo of M51

- LOFAR subbands were compared to a recent Effelsberg observation at 2.65GHz.
- Radial surface brightness profile was produced.

Average Integrated Flux Density from Centre of M51

The Halo of M51

- LOFAR subbands were compared to a recent Effelsberg observation at 2.65GHz.
- Radial surface brightness profile was produced.
- Lower frequency subbands show an extended halo.

Average Integrated Flux Density from Centre of M51

M51 LOFAR Observation – Instrumental Polarization

- Subband 60 (139MHz) shows polarization at the location of M51.
- Other Subbands show polarization only in Stokes Q.
- Unlikely to see real polarization in a single subband due to bandwidth depolarization.
 Instrumental polarization is too strong, signal to noise is too weak.
- Therefore, RM Synthesis is needed to separate instrumental and real polarization.

Conclusions

- The radio haloes of NGC4631 & M51 are clearly visible at LOFAR frequencies.
- A steep spectrum region is detected between M51 and its companion, perhaps a pool of old electrons or a shock at the interface region.
- The Spectral Index of the M51 center is very steep (-1.4).
- Images will be significantly improved when combining all subbands and removing 3C295 from the uv-data of the target observation.
- Much more work is needed especially with respect to calibration and detection of diffuse polarized emission.