

LOFAR Imager: taking Direction Dependent Effects into account using A-Projection

Cyril Tasse, Ger van Diepen, Joris van Zwieten, Bas van der Tol

Sanjay Bhatnagar, Urvashi Rau, Kumar Golap

$$V_{pq} = (g_p.g_q^*) \int \mathcal{B}(l,m).\mathcal{I}(l,m)$$

. exp $(-2\pi i (u_{pq}l + v_{pq}m + w_{pq}.(\sqrt{1 - l^2 - m^2} - 1))) dl.dm$

- Calibration

- Calibration

$$V_{pq} = \underbrace{(g_p.g_q^*)}_{S} \int \mathcal{B}(l,m).\mathcal{I}(l,m)$$

. exp $(-2\pi i (u_{pq}l + v_{pq}m + w_{pq}.(\sqrt{1 l^2 m^2} - 1)))dl.dm$
Small field of view

- Imaging

$$\mathbf{I}(\mathbf{l},\mathbf{m}) = \frac{1}{\mathbf{B}(\mathbf{l},\mathbf{m})} \mathbf{FT}(\frac{V(u,v)}{[g.g^*](u,v)})$$

- Calibration

- Imaging

... When Direction Dependent Effects (DDE) become a problem : Beam

LOFAR stations are phased arrays

- Beam is variable in frequency and time
- Beam can be station-dependent

... When Direction Dependent Effects (DDE) become a problem : Beam

One off-axis source IQUV=(100, 40, 20 10) 08^h36^m 24^m 00m 07h54 J2000 Right Ascension B C -10-50 ΧХ -20 XY -100 -30 L C -10 -20 -20 -40YΧ -60^L -30 L

... When Direction Dependent Effects (DDE) become a problem : Beam

-20

-40

-60 L

1000

2000

3000

4000

5000

6000

7000

One off-axis source IQUV=(100, 40, 20 10)

"Traditional" imager removes visibility with constant amplitude

... When Direction Dependent Effects (DDE) become a problem : Ionosphere

Big field of view : station, direction, time and frequency dependent

Other direction dependent effects :

- Projection of the dipoles on the sky
- Faraday rotation
- + Effect on the polarisation

The Measurement Equation

Hamaker 1996

A-Projection

JAWS: the practice

- Plug in the casa architecture
- Full Polarization
- Convolution function is mapped by i,j,t, nu
- lonosphere easy to plug in
- Will run in parallel

Mathematical framework-works

One off-axis source IQUV=(100, 40, 20 10)

BBS predict (DFT)

Mathematical framework-works

Mathematical framework-works

BBS predict (DFT)

AW degridding (clean component put by hand)

Mathematical framework-works

Mathematical framework-works

Recovered IQUV=(100, 40, 20 10) fluxes to better than 1%

Mathematical framework-works

Same simulated dataset with one off-axis source and the beam (IQUV=100,40,20,10)

On real data (A2255)

JAWS

Casa

See Roberto Pizzo talk

On real data (3C196)

3C196 off axis ~150MHz

- Calibrated using 3C196+2 sources sources
- AW visibility estimates for those. Little difference?

On real data (3C196)

Beam taken into account

No Beam taken into account

On real data (3C196)

Beam taken into account

No Beam taken into account

Conclusion and Next steps

Conclusion:

- Full Polarisation Framework based on Measurement Equation is working
- Doesn't do miracles
- Very flexible
- Effect will be seen at higher dynamical range?

Next steps:

- Optimise code
- Study convergence major cycle & SelfCal
- Ionosphere phase screen model
- Full Multi-Frequency cleaning
- Faraday Rotation?

... Start doing serious survey science

LOFAR Beam: The Mueller Matrix varying over the image plane

One pair of antennae, one time and frequency value

LOFAR Beam: The Mueller Matrix varying over the image plane

Beam bormalized by Beam Jones matrix at the center of the field (we correct the visibilities accordingly before the imaging)

!!! Color bar is adapted to the image here otherwise you don't see anything!!!