THE LOFAR TRANSIENTS PIPELINE

RESULTS AND STATUS

Evert Rol

LOFAR Transients Key project

Standard imaging procedure

- Standard imaging procedure
- Optimised for transients
 - Avoid flagging fast transients
 - re-arrange subbands
 - prepare final images for TRAP

- Standard imaging procedure
- Optimised for transients
 - Avoid flagging fast transients
 - re-arrange subbands
 - prepare final images for TRAP
- Time slicing

Source finding

Source Finding

• Optimised for transient finding

• Fast enough for 1 second images

Source Finding

- Optimised for transient finding
 - Fast enough for 1 second images
- False detection algorithm
 - Some statistics on detected transients

DATABASE

DATABASE

- MonetDB, developed by CWI
 - column store: faster when accessing data from millions of records

DATABASE

- MonetDB, developed by CWI
 - column store: faster when accessing data from millions of records
- A lot of the heavily lifting is done **inside the database**
 - Source matching
 - Variability search

CLASSIFICATION

CLASSIFICATION

- Manual decision tree
 - Good to pick out those sources you care for

CLASSIFICATION

- Manual decision tree
 - Good to pick out those sources you care for
- Automated classification
 - Development ongoing
 - Lack of training data set

• A simple run, from source extraction to classification: 20 seconds

- A simple run, from source extraction to classification: 20 seconds
- Finds transients, but reliability depends on images

- A simple run, from source extraction to classification: 20 seconds
- Finds transients, but reliability depends on images
- In principle, light curves are available!

NEAR FUTURE

Monitoring list of interesting sources

- Monitoring list of interesting sources
- Pick up first detection of new source

- Monitoring list of interesting sources
- Pick up first detection of new source
- Notify people about new transients (email, VO events)

- Monitoring list of interesting sources
- Pick up first detection of new source
- Notify people about new transients (email, VO events)
- Quality control

LONGER TERM

Spectral information

- Spectral information
- Polarisation information

- Spectral information
- Polarisation information
- MAC/SAS integration

- Spectral information
- Polarisation information
- MAC/SAS integration
- Automated classification

RESULTS

(THOSE LIGHT CURVES)

RESULTS

(THOSE LIGHT CURVES)

HTTP://HEASTRO2.SCIENCE.UVA.NL:8888/SEARCH/

LOFAR transients database

Datasets

id	description	in name	Reprocessing step #	Processing finished	Number of transients
<u>21</u>	None	L2010_20850	0	2011-09-08T14:06:51	10
<u>22</u>	None	L2010_20850	1	2011-09-08T14:08:18	10
<u>23</u>	None	L2010_20850	2	2011-09-08T14:21:25	10
<u>24</u>	None	L2010_21641	0	2011-09-08T22:28:57	0
<u>25</u>	None	L2010_21641	1	2011-09-09T09:21:09	1
<u>26</u>	None	L2010_21641	2	2011-09-09T12:03:53	1

Dataset #21, L2010_20850

Properties

description: None Reprocessing step: 0 processing finished: 2011-09-08T14:06:51

Images

id	start time	integration time (seconds)	band	effective frequency (Hz)	bandwidth (Hz)	Location
18	2010-08-13T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L09851_227sbs.fits
19	2010-08-20T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L09936_227sbs.fits
20	2010-08-21T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L09948_227sbs.fits
21	2010-08-27T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L20033_227sbs.fits
22	2010-09-25T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L20613_227sbs.fits

Transients

ID	source ID	significance level	# of points	lightcurve start time
35	269	1.0	5	1970-01-01T00:00:00
<u>36</u>	270	1.0	5	2010-08-27T10:00:00
<u>28</u>	272	1.0	5	1970-01-01T00:00:00
<u>32</u>	274	1.0	5	1970-01-01T00:00:00
<u>29</u>	275	1.0	5	2010-08-13T10:00:00
<u>30</u>	277	1.0	5	2010-08-13T10:00:00
37	280	1.0	5	2010-08-27T10:00:00
33	285	1.0	5	1970-01-01T00:00:00
<u>31</u>	287	1.0	5	1970-01-01T00:00:00
<u>34</u>	<u>290</u>	1.0	5	2010-08-21T10:00:00

Sources

View all 33 unique sources for this dataset

Properties

Start time:	2010-08-27T10:00:00
Integration time:	1
Band:	20
Effective frequency:	163.18 MHz
Bandwidth:	48.24 MHz
Dataset #:	<u>21</u>

Quick view

Dataset #21, L2010_20850

Properties

description: None Reprocessing step: 0 processing finished: 2011-09-08T14:06:51

Images

id	start time	integration time (seconds)	band	effective frequency (Hz)	bandwidth (Hz)	Location
18	2010-08-13T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L09851_227sbs.fits
19	2010-08-20T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L09936_227sbs.fits
20	2010-08-21T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L09948_227sbs.fits
21	2010-08-27T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L20033_227sbs.fits
22	2010-09-25T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L20613_227sbs.fits

Transients

ID	source ID	significance level	# of points	lightcurve start time
35	269	1.0	5	1970-01-01T00:00:00
36	270	1.0	5	2010-08-27T10:00:00
<u>28</u>	272	1.0	5	1970-01-01T00:00:00
<u>32</u>	274	1.0	5	1970-01-01T00:00:00
<u>29</u>	275	1.0	5	2010-08-13T10:00:00
<u>30</u>	277	1.0	5	2010-08-13T10:00:00
37	280	1.0	5	2010-08-27T10:00:00
33	285	1.0	5	1970-01-01T00:00:00
<u>31</u>	287	1.0	5	1970-01-01T00:00:00
<u>34</u>	<u>290</u>	1.0	5	2010-08-21T10:00:00

Sources

View all 33 unique sources for this dataset

Unique sources in dataset #21

ID	image (first detected)	# of associations	RA	declination	detection level	flux (Jy)
<u>266</u>	<u>18</u>	5	55.442 +/- 10.478	55.940 +/- 5.846	16.112	0.840 +/- 0.053
<u>267</u>	<u>18</u>	2	54.826 +/- 11.766	57.039 +/- 5.731	14.280	0.653 +/- 0.046
<u>268</u>	<u>18</u>	2	54.469 +/- 10.273	56.896 +/- 7.052	12.536	0.616 +/- 0.048
<u>269</u>	<u>18</u>	5	54.100 +/- 2.546	53.659 +/- 1.642	52.536	9.532 +/- 0.174
<u>270</u>	<u>18</u>	5	54.011 +/- 6.280	52.451 +/- 5.520	19.990	1.236 +/- 0.062
<u>271</u>	<u>18</u>	3	53.857 +/- 68.673	55.074 +/- 16.188	11.913	0.717 +/- 0.060
272	<u>18</u>	5	53.770 +/- 6.453	55.817 +/- 4.986	20.154	1.660 +/- 0.080
<u>273</u>	<u>18</u>	3	53.537 +/- 10.162	56.213 +/- 6.287	13.953	0.958 +/- 0.066
<u>274</u>	<u>18</u>	5	53.230 +/- 3.811	54.592 +/- 2.498	31.937	2.962 +/- 0.089
<u>275</u>	<u>18</u>	5	53.068 +/- 3.605	55.933 +/- 2.449	34.065	3.224 +/- 0.091
<u>276</u>	<u>18</u>	4	52.858 +/- 7.551	55.276 +/- 4.945	16.570	2.242 +/- 0.131
<u>277</u>	<u>18</u>	5	52.672 +/- 4.768	57.076 +/- 3.183	23.278	1.718 +/- 0.066
<u>278</u>	<u>18</u>	2	52.650 +/- 8.357	51.889 +/- 5.941	13.563	0.806 +/- 0.057
<u>279</u>	<u>18</u>	3	52.467 +/- 10.050	55.469 +/- 5.770	13.965	2.463 +/- 0.172
<u>280</u>	<u>18</u>	5	52.447 +/- 1.890	53.552 +/- 1.304	72.240	12.502 +/- 0.179
<u>281</u>	<u>18</u>	5	52.460 +/- 8.531	52.866 +/- 7.148	14.180	1.112 +/- 0.076
<u>282</u>	<u>18</u>	4	52.177 +/- 8.433	53.493 +/- 7.593	13.705	2.210 +/- 0.159
<u>283</u>	<u>18</u>	4	52.082 +/- 8.644	56.579 +/- 5.955	12.687	0.956 +/- 0.068
<u>284</u>	<u>18</u>	5	52.128 +/- 9.582	53.161 +/- 7.325	12.583	1.381 +/- 0.106
<u>285</u>	<u>18</u>	5	52.029 +/- 2.878	55.164 +/- 1.654	45.911	11.903 +/- 0.247
<u>286</u>	<u>18</u>	5	51.920 +/- 4.103	55.387 +/- 2.763	26.008	7.241 +/- 0.249
<u>287</u>	<u>18</u>	5	51.877 +/- 6.132	56.265 +/- 2.989	23.660	2.501 +/- 0.096
<u>288</u>	<u>18</u>	2	51.884 +/- 39.619	53.704 +/- 13.833	10.329	0.991 +/- 0.115
<u>289</u>	<u>18</u>	5	51.041 +/- 7.878	53.975 +/- 6.799	13.223	1.192 +/- 0.083
<u>290</u>	<u>18</u>	5	50.948 +/- 4.915	52.763 +/- 3.814	26.597	1.558 +/- 0.060
<u>291</u>	<u>18</u>	4	50.034 +/- 8.583	54.848 +/- 6.118	14.197	1.048 +/- 0.070
<u>292</u>	<u>18</u>	5	49.724 +/- 6.168	55.060 +/- 4.046	17.785	1.530 +/- 0.076
<u>293</u>	<u>19</u>	2	57.797 +/- 25.981	51.655 +/- 4.215	10.100	0.501 +/- 0.050
<u>331</u>	21	1	55.739 +/- 14.216	54.804 +/- 9.956	10.953	0.371 +/- 0.034
339	21	2	53.715 +/- 12.526	54.635 +/- 7.770	12.251	0.823 +/- 0.067

Unique sources in dataset #21

ID	image (first detected)	# of associations	RA	declination	detection level	flux (Jy)
<u>280</u>	<u>18</u>	5	52.447 +/- 1.890	53.552 +/- 1.304	72.240	12.502 +/- 0.179
<u>285</u>	<u>18</u>	5	52.029 +/- 2.878	55.164 +/- 1.654	45.911	11.903 +/- 0.247
<u>269</u>	<u>18</u>	5	54.100 +/- 2.546	53.659 +/- 1.642	52.536	9.532 +/- 0.174
<u>286</u>	<u>18</u>	5	51.920 +/- 4.103	55.387 +/- 2.763	26.008	7.241 +/- 0.249
<u>275</u>	<u>18</u>	5	53.068 +/- 3.605	55.933 +/- 2.449	34.065	3.224 +/- 0.091
<u>274</u>	<u>18</u>	5	53.230 +/- 3.811	54.592 +/- 2.498	31.937	2.962 +/- 0.089
<u>287</u>	<u>18</u>	5	51.877 +/- 6.132	56.265 +/- 2.989	23.660	2.501 +/- 0.096
<u>279</u>	<u>18</u>	3	52.467 +/- 10.050	55.469 +/- 5.770	13.965	2.463 +/- 0.172
<u>276</u>	<u>18</u>	4	52.858 +/- 7.551	55.276 +/- 4.945	16.570	2.242 +/- 0.131
<u>282</u>	<u>18</u>	4	52.177 +/- 8.433	53.493 +/- 7.593	13.705	2.210 +/- 0.159
<u>277</u>	<u>18</u>	5	52.672 +/- 4.768	57.076 +/- 3.183	23.278	1.718 +/- 0.066
<u>272</u>	<u>18</u>	5	53.770 +/- 6.453	55.817 +/- 4.986	20.154	1.660 +/- 0.080
<u>290</u>	<u>18</u>	5	50.948 +/- 4.915	52.763 +/- 3.814	26.597	1.558 +/- 0.060
<u>292</u>	<u>18</u>	5	49.724 +/- 6.168	55.060 +/- 4.046	17.785	1.530 +/- 0.076
<u>284</u>	<u>18</u>	5	52.128 +/- 9.582	53.161 +/- 7.325	12.583	1.381 +/- 0.106
<u>270</u>	<u>18</u>	5	54.011 +/- 6.280	52.451 +/- 5.520	19.990	1.236 +/- 0.062
<u>289</u>	<u>18</u>	5	51.041 +/- 7.878	53.975 +/- 6.799	13.223	1.192 +/- 0.083
<u>281</u>	<u>18</u>	5	52.460 +/- 8.531	52.866 +/- 7.148	14.180	1.112 +/- 0.076
<u>291</u>	<u>18</u>	4	50.034 +/- 8.583	54.848 +/- 6.118	14.197	1.048 +/- 0.070
<u>288</u>	<u>18</u>	2	51.884 +/- 39.619	53.704 +/- 13.833	10.329	0.991 +/- 0.115
<u>273</u>	<u>18</u>	3	53.537 +/- 10.162	56.213 +/- 6.287	13.953	0.958 +/- 0.066
<u>283</u>	<u>18</u>	4	52.082 +/- 8.644	56.579 +/- 5.955	12.687	0.956 +/- 0.068
<u>266</u>	<u>18</u>	5	55.442 +/- 10.478	55.940 +/- 5.846	16.112	0.840 +/- 0.053
<u>339</u>	<u>21</u>	2	53.715 +/- 12.526	54.635 +/- 7.770	12.251	0.823 +/- 0.067
<u>278</u>	<u>18</u>	2	52.650 +/- 8.357	51.889 +/- 5.941	13.563	0.806 +/- 0.057
<u>359</u>	<u>21</u>	2	50.767 +/- 12.145	55.132 +/- 9.415	10.253	0.795 +/- 0.075
356	21	1	51.745 +/- 13.957	56.496 +/- 7.603	10.551	0.722 +/- 0.069
<u>271</u>	<u>18</u>	3	53.857 +/- 68.673	55.074 +/- 16.188	11.913	0.717 +/- 0.060
<u>267</u>	18	2	54.826 +/- 11.766	57.039 +/- 5.731	14.280	0.653 +/- 0.046
268	18	2	54.469 +/- 10.273	56.896 +/- 7.052	12.536	0.616 +/- 0.048

Dataset #21, L2010_20850

Properties

description: None Reprocessing step: 0 processing finished: 2011-09-08T14:06:51

Images

id	start time	integration time (seconds)	band	effective frequency (Hz)	bandwidth (Hz)	Location
18	2010-08-13T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L09851_227sbs.fits
19	2010-08-20T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L09936_227sbs.fits
20	2010-08-21T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L09948_227sbs.fits
21	2010-08-27T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L20033_227sbs.fits
22	2010-09-25T10:00:00	3600.0	20	163.18 MHz	48.24 MHz	/home/evert/scratch/bell/L20613_227sbs.fits

Transients

ID	source ID	significance level	# of points	lightcurve start time
35	269	1.0	5	1970-01-01T00:00:00
36	270	1.0	5	2010-08-27T10:00:00
<u>28</u>	272	1.0	5	1970-01-01T00:00:00
<u>32</u>	274	1.0	5	1970-01-01T00:00:00
<u>29</u>	275	1.0	5	2010-08-13T10:00:00
<u>30</u>	277	1.0	5	2010-08-13T10:00:00
37	280	1.0	5	2010-08-27T10:00:00
33	285	1.0	5	1970-01-01T00:00:00
<u>31</u>	287	1.0	5	1970-01-01T00:00:00
<u>34</u>	<u>290</u>	1.0	5	2010-08-21T10:00:00

Sources

View all 33 unique sources for this dataset

Transient #36

Properties

source ID: 270 status: 0 significance level: 1.0 start time: 2010-08-27T10:00:00 image id: <u>18</u> dataset id: <u>21</u>

Lightcurve

Transient #35

Properties

source ID:	269
status:	0
significance level:	1.0
start time:	1970-01-01T00:00:00
image id:	<u>18</u>
dataset id:	21

Lightcurve

THE LOFAR TRANSIENTS PIPELINE

THE LOFAR TRANSIENTS PIPELINE

WE HOPE YOU HEAR FROM US SOON!