LOFAR Source Fínders Working Group

Chíara Ferrarí

With :

R. Breton, D. Carbone, A. van der Horst, G. Heald, A. Mínts, G. Macarío, R. Paladíno, D. Rafferty, J. Swínbank

and the collaboration of : P. Carroll, H. Garsden, E. Orrù, R. Pízzo, A. Rowlínson, A. Shulevskí, M. Wíse, S. van Velzen, S. Yatawatta

LOFAR SOURCE FINDERS WIKI PAGE

Trace: » commissioning:source_finders

A 'Source finders Working Group' was formed and started his activities.

The group is leaded by C. Ferrari and currently hosts (in alphabetic order): R. Breton, D. Carbone, P. Carroll, A. Dabbech, H. Garsden, A. van der Horst, G. Macario, A. Mints, R. Paladino, D. Rafferty, A. Rowlinson, A. Shulevski, J. Swinbank, S. van Velzen. Updates on the activities of the Source finders WG will be given regularly at the LSMs and at the Busy Thursdays. If you would like to join the group or for any question, please contact chiara.ferrari@oca.eu.

Main current aims

report bugs and needs to developers of available source finders

provide support to LOFAR users

LOFAR representative in the international radio source finding joint discussion

light the best settings for automatically run source finders in LOFAR / MSSS pipelines

TESTS AND DEVELOPMENTS

ATCA map (Ferrari et al. 2006) with sources found by an old version of PyBDSM

TESTS AND DEVELOPMENTS

New developments introduced by D. Rafferty in PyBDSM to deal with deconvolution errors

SUPPORT TO LOFAR USERS

2) Identify statistics to state if automatic source extraction was successful or not

Recent results about a possible automatic strategy for source extraction with PyBDSM are reported minimum

Results:

Problematic cases to be tested by the group:

Case 1)

I found out that I ran PyBDSM with the artous_do=True on the LOFAR map of GRS1915 more than 2 months ago. It didn't improve the source extraction and I had put in an angle. I ran it again after our meeting and it worked differently... It worked pretty well with the detection_threshold set to 5. It didn't work with the detection threshold set to 10, neither running it again on the residual map. Moreover, PyBDSM keeps crashing when I try to run it with atrous_do=True on the WSRT map.

You can find the .fits file of the LOFAR image & the DS9 .reg files of the PyBDSM runs I made today with atrous_do=True on my home on CEP2: /home/carbone/GRS1915/PYBDSM DARIO

I have now tested Dario's LOFAR image of GRS1915, and have found it to be very difficult to pick up the faint extended emission, as its brightest peak is <5 sigma when a smaller rms_box (< 200 pixels) is used. I had the best results using the new adaptive rms_box scaling.

Here are the parameters that gave the best fit (some of these parameters are only available in the newest version, available in /home/rafferty/PyBDSM or in the LUS build starting on 20/4/2012):

- adaptive_rms_box = T (to use smaller rms_box near bright sources to avoid detecting artifacts while still allowing a large rms_box everywhere else to pick up diffuse sources)
- adaptive_thresh = 50 (to set compact sources with peaks above 50 sigma as bright sources, around which the smaller rms_box will be used)
- rms_box = (500,200) (this sets the large-scale box size that is used far from bright sources; the small scale box size is calculated internally, but can be set using rms_box_bright)
- atrous_do = T (to pick up extended emission missed in initial fitting)
- thresh_isl = 2 (needed to detect enough of the extended emission to get good fits)

Below are some plots of the fit (red Gaussians are from fits to wavelet images)

DAVID

Example extracted from the Source Finders wiki page

-Table of Contents
 Important news
 Main tasks of the working group
 Reports writing: instructions
 Important updates
•PyBDMS
 Recent changes to PyBDSM (not yet in the Cookbook)
 PyBDSM tips
•PySE
 Recent changes to PySE
Results
 1) Tests on extracted parameters Results:
 Problematic cases to be
tested by the group:
 Suggestions:
 2) Identify statistics to state if
automatic source extraction was
successful or not
• Hesults:
 Problematic cases to be tested by the group;
Suggestione:
 Suggestions. Tests on the different methods.
to produce/sesociate multi-hand
source catalogs
 A) Tests on the different methods
using simulated random sources

(edit)

(edit)

[edit]

WENSS map posted by R. Pizzo

Test and source finders development by D. Rafferty and C. Ferrari

INTERNATIONAL DATA CHALLENGE

Simulations & Coordination by A. Hopkins, N. Seymour and M. Whiting

INTERNATIONAL DATA CHALLENGE

Simulations & Coordination by A. Hopkins, N. Seymour and M. Whiting

INTERNATIONAL DATA CHALLENGE

ASKAP simulations:

Visibilities created with ASKAP simulator

Visibilities imaged with ASKAPsoft imager

Hopkins et al., in prep.

C. Ferrari, R. Paladino, D. Rafferty: *PyBDSM* D. Carbone, A. van der Horst, J. Swinbank: *PySE* R. Breton, A. Mints: *source association*

+ A. Shulevski, G. Heald, R. Pizzo, E. Orrù,H. Garsden, H. Röttgering, N. Mohan

INTERNATIONAL DATA CHALLENGE: PYBDMS VS. PYSE RESULTS

Challenge 1 (zoom)

sources		
13747 \ 14035		
12884 \ 14035		
1: 1:		

Number of Detections

Legend: PySE \ PyBDSM

Nearest-Association Matching

	sources
d5_a3_debl_grid50_dtre90	13389 (0.974 \ 0.954)
fdr01_debl_grid50_dtre90	12618 (0.979 \ 0.899)

Legend: total match (% PySE \ % PyBDSM)

Flux Statistics for Nearest-Association Matching

	sources
d5_a3_debl_grid50_dtre90	1.0010 / 1.0030 / 0.0592
fdr01_debl_grid50_dtre90	1.0023 / 1.0035 / 0.0533

Legend: mean flux ratio / median flux ratio / standard deviation

Statistics on the PySE / PyBDSM flux ratio.

Successful PyBDSM & PySE detections

PyBDSM & PySE detections but significantly different flux values

+

PyBDSM detection - no PySE detection

PySE detection - no PyBDSM detection

INTERNATIONAL DATA CHALLENGE: PYBDMS VS. PYSE RESULTS

+

Successful PyBDSM & PySE detections

PyBDSM & PySE detections but significantly different flux values

INTERNATIONAL DATA CHALLENGE: PYBDMS VS. PYSE RESULTS

Curve of growth of the number of PyBDSM/PySE matches as a function of error scaling (with respect to fiducial values returned by the source finders)

Courtesy: R. Breton

CURRENT STRATEGY FOR SIMULATED LOFAR MAPS

- Start from an existing LOFAR observation to have the gains in place
- Generate a sky model with requested features and power law distribution of fluxes
- Input gaussian noise into the visibilities and add the simulated sources
- Calibrate and image

Current limitations:

- Ionospheric 3D effects are not yet in place.
- De-calibrate the injected noise is not yet in place

Courtesy: D. Carbone and A. van der Horst

EXAMPLES OF SIMULATED MAPS

- Simulations with different number of sources
- Simulations with sources of different fluxes
- Simulations with sources of different shape

Courtesy: D. Carbone and A. van der Horst

SOURCE FINDING ON SIMULATED MAPS

The average value of the integrated flux ratio is about 1 up to about 4 degrees from the pointing center

Most of the sources have an offset of less than 20 arcsec (pixel size = 30 arcsec/pixel)

> Courtesy: D. Carbone and A. van der Horst

SOURCE FINDING ON MSSS MAPS

On-going tests on MSSS maps by C. Ferrari, G. Macario & G. Heald - PyBDSM developments by D. Rafferty MSSS Mosaic Field (Obs. Date 15 Feb 2013)

Not corrected for primary beam = Detection image

SOURCE FINDING ON MSSS MAPS

Corrected for primary beam = Analysis map

On-going tests on MSSS maps by C. Ferrari, G. Macario & G. Heald - PyBDSM developments by D. Rafferty MSSS Mosaic Field (Obs. Date 15 Feb 2013)

Not corrected for primary beam = Detection image

MORE DETECTIONS & MORE MULTI-BAND ASSOCIATIONS !!!

MSSS 2012 week 16 report by R. Breton

HOW TO COMBINE MAPS?

Test on source finders by C. Ferrari and G. Macario - In collaboration with G. Heald and the MSSS team Field including the galaxy cluster Abell 2255 (Obs. Date: 08 Feb 2013)

HOW TO COMBINE MAPS?

Test and source finders development by C. Ferrari and G. Macario - In collaboration with G. Heald and the MSSS team Field including the galaxy cluster Abell 2255 (Obs. Date: 08 Feb 2013)

NEED OF DIFFERENT QUALITY FLAGS IN THE FINAL CATALOG

For MSSS:

▶ Q.F. = good ⇒ source detected in MSSS & in WENSS/NVSS

▶ Q.F. = mean ⇒ source detected in MSSS & in WENSS/

NVSS, but with a flux difference higher than n_sigma

 $\mathbb{P}Q.F. = poor \Rightarrow point source detected only in MSSS$

 $Partial Q.F. = extended \Rightarrow$ diffuse source detected in MSSS

For deeper Surveys:

Take advantage of the possibility to use both PyBDSM and PySE (see also results of the Data Challenge)

Use joint *multi-band detections*

COMPARISON WITH WENSS CATALOG

COMPARISON WITH WENSS CATALOG

MAIN POINTS TO BE ANSWERED

- Which are the parameters that are important to set for optimizing source finders ?
- Which corrections should we introduce in theoretical error bars given by the source finder tools ?
- Which source extraction and association strategy should we use for multi-band LOFAR catalogs ?
- ▶ How to build a very reliable and complete catalog from LOFAR surveys ?

- → Need of more complex simulated LOFAR maps
- → Importance of current tests on MSSS maps
- \rightarrow Man power welcome in the group !