LOFAR Workshop 2014 Summary

Radboud University Nijmegen

Heino Falcke

(Chair of the ILT Board) Radboud University Nijmegen ASTRON, Dwingeloo

ILT Board: M. Garret (ASTRON), H. Rottgering (NL), H. Falcke (NL), M. Brüggen (D), J. Conway (S), P. Best (UK), M. Tagger (F) R. Vermeulen (Dir.)

Keynote sucks ...

- Apple is the new Microsoft ...
- People punished for using latest version of Keynote that wants to force me buying a new version:
 - Heald
 - de Gasperin
 - Rowlinson

The Enemy

Radboud University Nijmegen

The good guys/gals: de Gasperin, Mevius, (van Weeren)

EOR 3C196 – Million:1 DR

EOR NCP

Radboud University Nijmegen

eepest (low-frequency) 4.00e-04 3.50e-04 radio image! 3.00e-04 2.50e-04 2.00e-04 1.50e-04 20,000 sources, Billion pixels 150 MHz, 2" pixels, 25 μJy noise, 200 hrs data 9.97e-05 Yatawatta

Clusters

Halo E-W ~1.07 degrees 1.8 Mpc!

Coma cluster

Bridge of emission connecting Halo and Relic

> Relic ~800kpc Bridge connecting relic and NGC4789

Radio emission over 2 degrees ~3.3 Mpc NGC 4839

NGC4789

Bonafede

Large Fields

Spectral aging ... Radio Archeology

Magnetism

Long baselines LOFAR LB Snapshot survey

Long Baselines M82

Spectroscopy(!): 1st Extragalactic Carbon Radio Recombination Line in M82

Transients – something is varying ...

"Trapping" Ghosts ...

Radboud University Nijmegen

Stewart/Rowlinson

Fast Radio Transients

Radboud University Nijmegen

DM vs RA and DEC vs RA for pulsar(red) and coincidence triggers(blue)

We are in principle ready to look for Fast Radio Bursts regularly ...

Two more pulsars found

Radboud University Nijmegen

Cooper

100.000 pulsar candidates scanned ...

Millisecond Pulsars well detected (39/55)

Radboud University Nijmegen

Can scattering be overcome (Archibald, Stinebring)?

Kondratiev

Mode switching

B0943+10: Mode changing but what is changing?

Radboud University Nijmegen

Polarization properties of pulsars and birefringence (Noutsos)

Solar Imaging Bonanza

Radboud University Nijmegen

Morosan, Breitling, Mann

Lunar Imaging Bonanza

Radboud University Nijmegen

Vedantham

Ionosphere: Absorption & Scintillation

Radio Emission from Cosmic Rays

SETI@LOFAR

Radboud University Nijmegen

Siemion

EOR Limits

LOFAR keeps growing

Science Output

- Refereed commissioning papers
 - 15 since 2011, 201 cites
 - Top Cited:
 - Stappers 2011 (pulsars) 67 cites
 - Van Haarlem 2013 (LOFAR) 53 cites
 - Van Weeren 2012 (Abell 2256) 18 cites
 - High Impact: 1x Science (Hermsen) + 1x Nature??
- Papers mentioning LOFAR (title/abtract):
 - 747 papers with 4869 cites
 - Expectation management needed ...

Top 8 "LOFAR" papers

1	2007MNRAS.377.1043M	164.000	05/2007	<u>A</u> Z	<u>F</u> <u>G</u>	X	<u>R</u> <u>C</u>		<u>U</u>	
	McQuinn, Matthew; Lidz, Adam; Zahn, Oliver; Dutta, Suvendra; Hernquist, Lars; Zaldarriaga, Matias	The morphology of HII regions during reionization								
2	□ <u>2004ApJ6157M</u>	124.000	11/2004	AZI	EE	x	<u>R</u> <u>C</u>		U	
	Morales, Miguel F.; Hewitt, Jacqueline	Toward Epoch of Reionization Measurements with Wide-Field Radio Observations								
3	2003MNRAS.3468710	113.000	12/2003	ΑZ	<u>F</u> <u>G</u>	x	<u>R</u> <u>C</u>		<u>U</u> H	
	Oh, S. Peng; Mack, Katherine J.	Foregrounds for 21-cm observations of neutral gas at high redshift								
4	2002ApJ572L.123I	112.000	06/2002	AZI	EF	x	<u>R</u> <u>C</u>		U	
	Iliev, Ilian T.; Shapiro, Paul R.; Ferrara, Andrea; Martel, Hugo	On the Direct Detectability of the Cosmic Dark Ages: 21 Centimeter Emission from Minihalos								
5	□ 2006ApJ63820B	109.000	02/2006	AZI	EE	x	<u>R</u> <u>C</u>		U	
	Bowman, Judd D.; Morales, Miguel F.; Hewitt, Jacqueline N.	The Sensitivity of First-Generation Epoch of Reionization Observatories and Their Potential for Differentiating Theoretical Power Spectra								
6	2003APh19477F	97.000	07/2003	AZI	E	x	<u>R</u> <u>C</u>		U	
	Falcke, Heino; Gorham, Peter	Detecting radio emission from cosmic ray air showers and neutrinos with a digital radio telescope								
7	□ 2006MNRAS.369.1577C	96.000	07/2006	ΑZ	<u>F</u> <u>G</u>	X	<u>R</u> <u>C</u>	<u>S</u> <u>N</u>	<u>U</u>	
	Cassano, R.; Brunetti, G.; Setti, G.	Statistics of giant radio haloes from electron reacceleration models								
8	□ 2008MNRAS.385.1211P	94.000	04/2008	ΑZ	<u>F</u> <u>G</u>	x	<u>R</u> <u>C</u>	<u>s</u> o	U	
	Pfrommer, Christoph; Enßlin, Torsten A.;	Simulating cosmic rays in clusters of galaxies - II. A unified scheme for radio haloes and relics with predictions of the y-ray emission								

Progress

Progress (Imaging)

• There is progress!

- It seems slow, but from year to year we make huge progress:
 - MSSS detecting 10 src/sqdeg (~200.000 sources) fully automatic (Heald)
 - LOFAR users are able to get to 1-2 mJy images "routinely" (with quite some effort still)" (Coppejans, Heesen, Mahony, Bonafede)
 - Several experimental methods available that allow to go to science quality thermals noise imaging (de Gasperin)
 - "Extreme peeling" (van Weeren) actually exercised on HBA data
 - LBA data still needs some work but also progress

Breakthroughs

- Historical "technical" breakthroughs
 - Thermal noise-limited science quality imaging
 - Highest resolution low-frequency images (VLBI)
- Unique LOFAR science breakthroughs:
 - Deepest EOR limit
 - 1st extragalactic Carbon RRL
 - Cosmic ray radio emission finally understood, composition measurement with highest precision and duty cycle
- A wealth of impressive pulsar results
 - New pulsars, intermittency, emission process and location

Lots of science

- Many more (potential) science results
 - MSSS lots of great science opportunities (!)
 - First LOFAR transient: What is this? Where is the rest?
 - Beautiful images (workshop banquet!)
 - Magnetic fields turbulence, CR diffusion
 - Resolved low-freq. solar imaging, tracing type III bursts
 - Spectral aging, spectral curvature (needs more work: many sources don't look much different from VLA ... find rare birds!)
- Overall science output still relatively low ...
 - So much data, so little to publish? Pick low-hanging fruits!
 - Better is the enemy of good (and also enemy of excellent)

Final thoughts

- We are not done yet
 - Transient capabilities
 - Implement new calibration schemes
 - long baselines (user software, reliability)
 - Polarization calibration
 - Publish papers, watch out for new things ...
- Fantastic progress by a very dedicated, highly-qualified, young generation of radio astronomers
 - We are in the final half-time of the match that is the tough one ...
 - We need perseverance and more smart ideas
 - But thanks to PhD students, postdocs, science support (!) and staff ...