The atmospheric refractive index and radio emission from extensive air showers

Arthur Corstanje, RU Nijmegen, LOFAR CR KSP LOFAR Science Workshop, Apr 5, 2016

Simplified air shower footprint on the ground

Simplified air shower footprint on the ground

Cherenkov ring at frequencies > 120 MHz

Simulation (CoREAS) with LOFAR HBA detection (circles)

Ring becomes sharper at higher frequencies

Nelles et al., Astropart. Phys 65 (2015)

Footprint at low frequencies, 30 – 80 MHz

 $Xmax = 630 g/cm^2$

 $Xmax = 700 \text{ g/cm}^2$

CoREAS simulated footprints of radio intensity

The effect of variations in refractive index (simplified)

Standard atmosphere (US/Intl.)

Constant temperature lapse rate: L = 6.5 K / km

 $p_0 = 1013.25 hPa$ (variable) $T_0 = 273.15 + 15 K$ (")

Then:
$$p = p_0 \left(1 - \frac{L}{T_0} h \right)$$

Refractivity N can be expressed as a function of pressure, temperature and (relative) humidity

 $\frac{gM}{RL}$

- Different for radio vs IR/visible !
- Especially the water vapor contribution

Refractivity proportional to density (dry) = green line

Absolute humidity independent of pressure

Effect of varying refractivity on Xmax measurements

Use a fitting method as in composition analysis:
 Normal N
 50 simulated showers
 50 simulated showers

take one as 'test shower' ('measured data')

Fit 49 showers to the test shower

(lateral power distributions)

- Make plot of fit quality versus Xmax
- Minimum indicates best-fitting Xmax

Average offset over all 'test' showers

Fitting shower LDF profiles

Compared antenna by antenna

x 50

Least-squares, MSE = fit quality

Fitting Xmax

Results

Rough model fits qualitatively Up to ~ 25 % scaling

Cherenkov angle dependence only

Standard atmosphere

No free parameters!

Significant effect cf. 16 g/cm² precision in composition analysis

Conclusion

- Atmospheric refractivity is one of the major systematic uncertainties in determining Xmax
- Bias of 0.9 to 2.2 g/cm² per 1 % change in N
 About 4 % variability realistic at Xmax level
- A simple model describes offsets qualitatively

 Cherenkov angle scaling, standard atmosphere
- Not fully fixable through only ground level refractivity / one standard atmosphere
 - Would need CoREAS update, and use local weather data