

Netherlands Institute for Radio Astronomy

Dying and restarted AGN in the LOFAR SKY

Raffaella Morganti ASTRON (NL) and Kapteyn Institute (Groningen)

Marisa Brienza, Leith Godfrey Elizabeth Mahony, Isabella Prandoni

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

uesday, 5 April 16

kapteyn astronomical institute

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

LOFAR Family Meeting, April 2016

Low frequencies, energetics and life-cycle of radio galaxies

- Key parameters to understand this cycle: injection index, energetics (equipartition? pressure balance?), losses (radiative, expansion), => LOFAR Nearby AGN WG magnetic field etc.
- Selection of dying/remnant radio sources (nuclear engine off!) rare objects => need large area, higher resolution with sensitivity to low surface brightness, good frequency coverage for spectral index
- Models of radio galaxy evolution to interpret the results

Brienza 2016

LOFAR HBA and LBA of the FRI radio galaxy 3C31

Heesen et al. "LOFAR observations of the radio tails in the FRI radio galaxy 3C31: cosmic ray acceleration, spectral ageing and magnetic fields"

about to be submitted

LOFAR HBA 145 MHz CHANDRA X-ray SDSS r'+g'+u'-band

bifurcation

bridge

N tail

Energetics and morphology of FRII radio galaxies: synchrotron/inverse-Compton model fitting

Better constrained spectrum at low frequencies. Spectral index steeper than expected.

The total lobe energy density is greater than previous estimates by a factor of 5.0 for 3C452 and by ~2.0 for 3C223.

The magnetic field strength of both sources is greater compared previous estimates **but still below equipartition**. The observed departure from equipartition may in some cases provide a solution to the spectral versus dynamical age disparity problem.

Harwood et al. "FRII radio galaxies at low frequencies I: energetics and morphology" 2016 MNRAS arXiv:1603.04438

Serendipitous LOFAR discovery of a 700-kpc remnant radio galaxy at low redshift

Tuesday, 5 April 16

Why is the radio plasma in BLOB1 still visible?

SELECTING REMNANT/DYING RADIO GALAXIES PhD Marisa Brienza

So far mostly using steep spectral index sources Importance of low frequencies

STEEP SPECTRAL INDEX SELECTION

(e.g. Parma+2007, Dwarakanath+2009, Sirothia+2009, VanWeeren+2009)

• SPECTRAL CURVATURE

(*Murgia*+2011) • MORPHOLOGY (e.g. Saripalli+2009)

...we want to use all these criteria together!

Search in the LH, 20arcsec resolution (Mahony et al.)

A1132

7% steep 25% of resolved sources (>26") are steep

1379 sources

Brienza et al. in prep SPECTRAL INDEX >1.2 S~nu^{-a}

Why this value?

alpha(LOFAR-NVSS)

743 sources with spectral index cut applied (36.5mJy) 5.8% steep 35% or resolved sources (>64") are steep

MORPHOLOGY SELECTION

★ EXTENDED

- ***** RELAXED MORPHOLOGIES
- ***** LOW SURFACE BRIGHTNESS
- ***** WITHOUT COMPACT COMPONENTS (UNDETECTED IN FIRST)

optical ID important to confirm the nature/redshift of the sources!

~ 10 CANDIDATES

among the extended, i.e. a few % How many of them are also among the steep spectrum?

Brienza et al. in prep

LOFAR CONTOURS + SDSS

Giovannini et al.

SPECTRAL CURVATURE = $a_{high}-a_{low}$

Literature data from Murgia et al. in prep

Brienza et al. in prep

S~nu^{-a}

LOFAR-WENSS-NVSS

MODELING THE INTEGRATED SPECTRA OF RADIO GALAXIES

Radiogalaxy.py (Godfrey et al. in prep)

Generalised Continuous Injection Model

- Distribution of magnetic field strengths (within each ΔV).=> within each volume element, Gaussian distribution of the field (i.e. non-uniform distribution of the field)
- Adiabatic and radiative cooling.

- Arbitrary evolution of Volume and B-field. Relevant to multiple phases (eg. active + remnant) • Arbitrary, time-dependent particle injection.
- Fast enough for spectrum fitting & producing mock- catalogues.

Evolution of the radio galaxy different for FRII -> self-similar model and FRI -> jet driven, pressure limited model (Luo & Sadler 2010) followed by adiabatically expanding (bubble phase)

Create mock catalogues

STATISTICAL MODELS OF THE REMNANT RADIO GALAXY POPULATION

For the sources in the Lockman-Hole field (Brienza et al. in prep)

- SKADS Simulated Skies (S3), most (~70%) of the sources FRI 20.
- Create mock catalogues of the radio galaxies by assuming

STATISTICAL MODELS OF THE REMNANT RADIO GALAXY POPULATION

Evolution of active phase following Luo & Sadler 2010 (pressure-limiting approximation)

ONLY radiative losses included

NEED FOR ADIABATIC EXPANSION! (to reproduce observation)

Godfrey et al. in prep Brienza et al. in prep

Tracing the adiabatic expansion in FRI: follow Luo & Sadler 2010

Preliminary modelling/statistics with adiabatic expansion

- Sources in the "remnant phase" ~35% of the whole population
- Those with $\alpha > 1.2$ are $16\% \rightarrow$ about twice what we detect
- Note: a large fraction of the "remnants" for the model definition cannot be recognised by our selection based on spectral index and/or spectral curvature

Brienza et al. in prep.

Conclusions

- Inventory of dying/remnant radio sources in the Lockman Hole field in progress -> using three different criteria Preliminary results: relatively small numbers also at low
- frequencies (<10%)
- Modelling the evolution of FRI including remnant phase (in progress)
- Preliminary results: Losses due to adiabatic expansion important • Cases like Blob1 (long off phase) are rare?
- Also on-going: look for young radio galaxies and restarted

All to be extended to the Tier-1 survey fields to expand the statistics!

