Observing the cold ISM with LOFAR

JBRO, R. van Weeren, F. Salgado, L. Morabito,
C. Toribio, P. Salas, K. Emig, X. Tielens,
H. Rottgering, + LOFAR Galactic KSP group

Universiteit Leiden

OUTLINE

- ISM & Low-frequency RRLs
- New Carbon RRL models
- CRRL diagnostic power
- Resolving the Milky Way
- Total power spectroscopy
- Conclusions

The Interstellar medium

Different Phases of the ISM

Phase	Т [К]	n _н [cm⁻³]	H-state	Xe	Obsv.
НІМ	10 ⁶	0.003	H⁺	1	X-ray, UV
WIM	10 ⁴	0.04	H⁺	1	UV-IR
WNM	8000	0.1	H ^o	0.1	HI (em)
CNM (HI)	100	50	H ⁰	<10 ⁻³	HI (abs)
CNM (H ₂)	30	>1000	H ₂	<10 ⁻⁷	СО

Galaxy evolution is driven by (SF) recycling of ISM

- => What is the role of the atomic CNM ?
- => *HI em* (contaminated), *HI abs* (difficult)

Outstanding questions

"Galaxy evolution is driven by recycling of the ISM"

but,

what is the role of the cold atomic gas in galaxy evolution ?

In particular:

- Morphology, dynamics and how does this compare to molecular, SF and hot gas ?
- Thermal, pressure balance ?
- Ionization rate ?
- Chemical enrichment ?
- CNM fraction of the HI 21 cm signal ?

<u>Diffuse RRL's</u> (≤ 1 GHz)

- Hydrogen RRL's always in Emission
- Carbon RRL's emission ≥ 130 MHz absorption ≤ 130 MHz
- Associated with CNM / PDR's $T_e \sim 10{\text{-}}300$ [K] $n_e \sim 0.01{\text{-}}1.0$ [cm⁻³]
- Properties : Te, ne, EM
- Ionisation : $\zeta(H)$
- Metallicity : [C/H]
- Kinematics: vel, FWHM

New Carbon RRL models

Recombination Lines

http://www.astro.rug.nl/~ndouglas/teaching/ObservingTechniques/spectroscopy.html

Rydberg Atom

- Outermost electron in high-n state
- Sees nucleus with +1 charge
- "Hydrogenic"

Regular (radiative) recombination: e- + A (q+) \rightarrow A (q-1) + photon

Assumption: Singly ionized, recombining Carbon (i.e. " hydrogenic ")

Dielectronic-like Recombination

<u>New RRL models</u>: Optical Depth (τ)

New RRL models: Line broadening

(Salgado+ subm/acc.)

Diagnostic power of CRRL's

* Cas A as a case study *

<u>Cas A</u> (data)

Cas A (WSRT P-band)

Cas A: Optical depth

* Uncertainty $T_{\rm e}$, $n_{\rm e}$ is about 10 %

G42 (inner GP: HBA 150 MHz, 4 MHz BW, 4hr)

* CRRL basic quantity is optical depth, <u>need</u> to understand the continuum

LOFAR (line) surveys

* Total power spectroscopy *

RRL Surveys

The Power of LOFAR:

Sensitivity, Resolution, FoV, BW

=> "Survey speed" $(\alpha, \delta, \lambda)$

LBA 10 - 70 MHz : 400 RRL α -lines HBA 105 - 250 MHz : 100 RRL α -lines

A) Medium resolution Galactic survey From degree-scales to >10'-scales

B) Galactic pinhole survey (<10')

=> see talk by <u>P. Salas</u>

C) Extragalactic survey

=> see talks by <u>C. Toribio</u> & <u>K. Emig</u>

Galactic plane RRLs: (before 2011)

=> but, expect: $\Omega(L,v) \sim \operatorname{arcmin-scales} !!$

Galactic Medium Resolution CRRL Survey

Galactic Medium Resolution CRRL Survey: P1 & P2

→ CRRL tau & FWHM decrease with Galactic longitude

LBA TA CRRL Survey: Commissioning & Future

Commissioning: (zerolevel determination, Cobalt commissioning of TA-spec) <u>Project 1 (LBA 256chn)</u>: BG vs. Cobalt, bandpass and zerolevel determination

LBA TA CRRL Survey: Commissioning & Future

256 channel correction test march 2016: (plots courtesy R. Fallows)

* Improved Cobalt bandpass correction looks encouraging, but needs to quantified

- new LBA 256 chn Cobalt commissioning observations are planned
- HBA and HBA-HIGH need commissioning with Cobalt (submitted)

LOFAR-RRL: Results & Outlook

$\underline{CNM} \rightarrow (T_e, n_e, L_C, \zeta_H, [C/H])$

(a) new CRRL models and Cas A observations

- New atomic data and full (n,l) treatment
- Cas A clouds are dense

(b) LOFAR can map the large-scale CNM in the MW

- Pinhole Milky Way: SNR , HII regions , ... ≥ 300 back ground galaxies
- Diffuse Milky Way : 1° LBA-TA (ok, but diluted)

=> Cobalt tied-array commissioning necessary

(c) New MW lines of sight show CRRLs

