EVLA Status and Prospects

Panoramic Radio Astronomy, 2-5 June 2009

Michael P. Rupen Project Scientist for EVLA's WIDAR Correlator

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Basic capabilities

• CONTINUOUS FREQUENCY COVERAGE, 1-50 GHz

- CONTINUOUS FREQUENCY COVERAGE, 1-50 GHZ
- WIDE BANDWIDTHS (UP TO 2 X 8 GHz, 2:1 BWR)
 - ✓ Sensitivity, uv-coverage, spectral index, RM, …

1-σ, 12-hours Red: Current VLA Black: EVLA GOALS

- CONTINUOUS FREQUENCY COVERAGE, 1-50 GHZ
- WIDE BANDWIDTHS (UP TO 2 X 8 GHz, 2:1 BWR)
- MUCH MORE STABLE (DIGITAL)

3C84 @ 5 GHz
~10 hours
WIDAR PTC

- CONTINUOUS FREQUENCY COVERAGE, 1-50 GHZ
- WIDE BANDWIDTHS (UP TO 2 X 8 GHz, 2:1 BWR)
- MUCH MORE STABLE
- WIDAR CORRELATOR
 - ✓16,384 4 million channels
 - ✓64 independent 31 kHz-128 MHz subband pairs
 - ✓Time res'n as fine as ~10 microsec
 - ✓4- or 7-bit correlation
 - ✓RFI rejection
 - ✓2000 pulsar phase bins
 - ✓VLBI-ready (phased VLA/Y1)

SAVING MONEY

•SAME DISHES

- Primary beam at 1.5 GHz:
 - 30 arcmin
- Pointing as best of VLA dishes (rms= 6" blind, 3" referenced)
- Same slew/switching rates as VLA
- Same collecting area

SAME CONFIGURATIONS

- Switching to D-C-B-A, primarily for data rate & software reasons
- Spatial resolution at 1.5 GHz:
 - 45, 15, 4, 1 arcseconds
- E configuration?

Status & test results

Current status

- All fiber laid
- 21 EVLA antennas now in use -- account for >70% of ant-hours
- All feed horns fabricated for L, C, Ka; S and Ku underway
- 10 Ka-band, 2 S-band receivers deployed
 - Ku-band prototype under development
 - 50 MHz-1 GHz receiver will be tested, thanks to NRL
- **OMTs meet specifications** (L, C, S); X-band design almost complete
 - L-band prod'n begins 2009
- LO/IF ahead of schedule
- 8-bit (1 GHz) samplers installed; first 3-bit (2 GHz) due in July
- Real-time software on track (migrated from Modcomps; Proposal, ObsPrep, Scheduler, Archive Tools; WIDAR systems integration)
- Post-processing software looking good (CASA; algorithms; cluster)
- WIDAR correlator
 - data cables & all racks installed
 - final hardware ordered

10-station, 4 subband, single pol'n WIDAR-0 fringing nicely (March 6)

1-2 GHz sensitivity

- Tuning: 940-2200 MHz
- Tsys/eff= 65-70 K
- Aeff/Tsys~ 200 m²/K

- Much flatter response with elevation
- Schedule:
- 8jul09: 2 30jul09: 3
- jan11: 15 may12: 25
- dec12: 28

Pol'n stability: L-Band (1485 MHz)

- 3C147 (unpolarized)
- 6 hours' continuum data with interim L-band polarizers
- Single pol'n solution

INRAC

Observing near RFI: interim system

RFI: correlator linearity

- WIDAR designed to provide more than 50 dB linearity.
- Early tests with the WIDAR PTC are very encouraging

- Left: Scalar averaged spectrum of 3C84, showing INMARSAT
- Right: Closeup, showing astronomical signal between emissions.
- There is no sign of correlator saturation, at a level 40 dB below the peak signal strength.

1-2 GHz: continuum + RFI

NRAO

• 1244-1756 MHz

 8192 x 62.5 kHz (13 km/s for local HI)

NRAO

- 1376-1384 MHz (one 8 MHz subband)
- 4096 x 1.95 kHz (0.4 km/s)

- 8 x 8 MHz subbands
- 8 x 4096 channels
 - -Avg'd x2 (3.9 kHz)
 - or x64 (470 kHz)
- Zoomed in here!

- 8 x 8 MHz subbands
- 8 x 4096 channels
 - -Avg'd x2 (3.9 kHz)
 - or x64 (470 kHz)
- Zoomed in here!
- Full EVLA:
 - -64 independently tunable subband pairs
 - Different bandwidth
 & resolution for each subband pair

Image not limited by closure errors

- 0217+738
 - -4 Jy "dot"
 - -2hr10min on-source
- 4588-5612 MHz
- Self-cal'd image
- Peak:rms= 72,800:1

Deep image of a blank field

- J1900+2815
- 9012-7988 MHz
- 2.3 hours on-source
- Rms in 125 kHz: 2.84 mJy/beam
- Rms in 103 MHz (825 channels): 0.11 mJy/bm
- Rms in 825 MHz (825x8 channels): 0.052 mJy/bm

WIDAR-0 with 10 antennas

• 3C84, 512 MHz @ 5 GHz, RR

EVLA

Deconvolution with 1.7:1 BWR

EVLA Primary beam correction with 1.5:1 BWR

3C286 field (1.2 GHz to 1.8 GHz)

Access to the EVLA

- Antennas in use all the time
- Receiver bands made available when >5
- WIDAR correlator in general use by March 2010
- Shared Risk Observing (Open or Resident) beginning T1 2010: <u>http://www.aoc.nrao.edu/evla/astro/</u>
 - First proposal call: 1 October 2009
 - Initial OSRO: 2 x 128 MHz, ramping up each configuration cycle
 - Initial RSRO: 2 x 1 GHz, ramping up each configuration

The role of the EVLA

The EVLA in context

- One of *many* new or hugely upgraded radio telescopes ASKAP, MeerKAT, APERTIF, ...
- EVLA is *not* primarily a 1-2 GHz spectral line survey instrument
 - Main strength of VLA has always been flexibility: frequency coverage, spatial resolution, temporal resolution, etc.
 - Improvements are mainly related to continuum sensitivity and flexibility -- no new collecting area (though much better at low elevations)
 - Lots of competition for telescope time!
 - Stellar flares to high-z CO

The EVLA's role at 1-2 GHz

- Very deep integrations on single fields
 - High-z
 - Diffuse HI
 - N.b. needs LOTS of time, or special resolution, to compete
- Some piggy-back surveys (e.g., always observe Galactic & targeted HI, OH, RRLs)
 - mis-match between line & continuum sensitivities makes this unsuitable for surveys of more distant HI
- High-resolution, high-sensitivity follow-up studies
- Extensions to higher frequencies
 - Continuum
 - Redshifted molecular lines
 - etc. etc.
- High-sensitivity VLBI/pulsar element

Implications & questions

- Observatory arrangements or individual PIs?
- Any implications for EVLA operations?
 - standard correlator setups
 - preferred setups (maybe even data formats) to allow combining or auto-processing follow-up data
 - rapid response to triggers
 - will there be more or less HI at the EVLA?
 - ???
- Does the arrow go both ways?
 - Given EVLA data, should one go after a source with MeerKAT/APERTIF/???
- Role of E configuration

Tables & useful details

Schedule: Growth of New Capability

SEFD & sensitivity results

		SEFI	D/Jy	Sensitiv	ity/1σ, 9hrs
	Band (GHz)	Req'd	Actual [#]	Full BW µJy	1 km/s mJy
L	1 – 2	325	TBD	1.6	0.5
S	2 – 4	235	~280*	~1.0*	~0.6*
С	4 – 8	260	275	0.7	0.3
X	8 12	300	TBD	0.8	0.3
Ku	12 18	385	TBD	0.8	0.3
K	18 26.5	650	420	0.75	0.25
Ka	26.5 40	760	600	1.1	0.29
Q	40 50	1570	1310	2.3	0.76

Blue = System tested

Red = Prototypes to be tested in 2009

NRAO

- * Preliminary result# Rough average over the band
- SEFD= 5.62 Tsys/ε σ= SEFD/[η_cN_Asqrt(Βτ)] η_c = 0.91 (4-bit)

$$\eta_c = 0.9$$

N_A= 27

Efficiency and Tsys Results

	Band	Ts	sys	Apert	ure Effic.
	(GHz)	Req'd	Actual [#]	Req'd	Actual [#]
L	1 – 2	26	TBD	.45	0.40 - 0.45
S	2 – 4	26	24 – 28*	.62	~0.52*
С	4 – 8	26	24 31	.56	.5361
X	8 12	30	TBD	.56	TBD
Ku	12 18	37	TBD	.54	TBD
K	18 26.5	59	36 42	.51	.5748
Ka	26.5 40	53	40 50	.39	.4836
Q	40 50	74 116	55 100	.34	.3728

Blue = System tested and in place, or under installation.

Red = Prototypes to be tested in 2009

- NRAO
- * Preliminary result
- # Range over the band

Open Shared Risk Observing (OSRO)

- <u>http://www.aoc.nrao.edu/evla/astro/osro.shtml</u>
- T1 2010 (1oct09 proposal deadline):
 - New bands
 - 2x128/2^N MHz full pol'n 64 channels; or
 - 1x256/2^N MHz dual pol'n, 256 channels
 - 1 sec dumps

36

OSRO WIDAR modes (1)

- Continuum applications and spectro-polarimetry
 - Two independently-tunable sub-band pairs (IFs), full pol., each with bandwidth 128/2ⁿ MHz (n=0,..,12), 64 channels

Sub-band BW (MHz)	Number of poln. products	Number of channels/poln product	Channel width (kHz)	Channel width (kms ⁻¹ at 1 GHz)	Total velocity coverage (kms ⁻¹ at 1 GHz)
128	4	64	2000	600/v(GHz)	38,400/√(GHz)
64	4	64	1000	300	19,200
32	4	64	500	150	9,600
16	4	64	250	75	4,800
8	4	64	125	37.5	2,400
4	4	64	62.5	19	1,200
2	4	64	31.25	9.4	600
1	4	64	15.625	4.7	300
0.5	4	64	7.813	2.3	150
0.25	4	64	3.906	1.2	75
0.125	4	64	1.953	0.59	37.5
0.0625	4	64	0.977	0.29	18.75
0.03125	4	64	0.488	0.15	9.375

OSRO WIDAR modes (2)

- Spectral line applications
 - One tunable sub-band pair (IF), dual polarization, with bandwidth 128/2ⁿ MHz (n=0,...,12), 256 channels

Sub-band BW (MHz)	Number of poln. products	Number of channels/poln product	Channel width (kHz)	Channel width (kms ⁻¹ at 1 GHz)	Total velocity coverage (kms ⁻¹ at 1 GHz)
128	2	256	500	150/v(GHz)	38,400/√(GHz)
64	2	256	250	75	19,200
32	2	256	125	37.5	9,600
16	2	256	62.5	19	4,800
8	2	256	31.25	9.4	2,400
4	2	256	15.625	4.7	1,200
2	2	256	7.813	2.3	600
1	2	256	3.906	1.2	300
0.5	2	256	1.953	0.59	150
0.25	2	256	0.977	0.29	75
0.125	2	256	0.488	0.15	37.5
0.0625	2	256	0.244	0.073	18.75
0.03125	2	256	0.122	0.037	9.375

Resident Shared Risk Observing (RSRO)

- <u>http://www.aoc.nrao.edu/evla/astro/rsro.shtml</u>
- Experts in residence as temporary staff members in exchange for early access
 - up to 100 hrs/month
 - NRAO staff also have early access
- Scientific, technical, & budgetary review
- Regular proposal calls, starting 1 October 2009
- Rough schedule:
 - T1 2010: 2x1 GHz total BW, 0.1 sec dumps
 - T2 2010: 2x8 GHz total BW
 - T3 2010: Recirculation (lots more channels)
 - T1-T2 2011: Increased flexibility in correlator resource allocation

RSRO: T1 2010-T2 2011

Date	Array Config	Total bandwidth per pol'n	Number of subband pairs	Channels per sb pair (4 pp)	Comments
T1 2010	D	1 GHz	16	64	All sb identical
					o-bit samplers
T2 2010	C	8 GH7	64	64	All sb identical
	U	0 0112	UT		3-bit samplers
T3 2010	B	8 GH7	64	<= 16 38/	All sb identical
10 2010		0 0112		- 10,004	Add recirculation
T1 2011	А	8 GHz	64	<=16,384	Independent subbands
T2 2011	D	8 GHz	64	<= 16,384	Can trade subbands for channels

Potential Areas of RSRO Participation

- Development of correlator modes
 - General correlator resource allocation
 - Multiple spectral lines for Galactic and extragalactic applications
- Planetary observing
- Astrometry
- Phased array and VLBI
- Pulsars

- Solar observing
- Development of observing and calibration strategies
 - Wideband calibration methods
 - High frequency calibration
 - Improved referenced pointing
 - Ionospheric calibration

- Calibrator models
- Polarimetry
- Mosaicing
- RFI excision

• Development of data reduction strategies and algorithms

- Automated flagging
- Wideband, wide-field imaging
- High dynamic range imaging

Algorithm development

- Algorithm implementation
- Post-processing computing and networking optimization
- On-the-fly imaging

- RSRO requirements
 At least one expert from each participating group must be in residence in Socorro
 - must contribute effectively to commissioning
 - limited support for salaries or accommodation may be available
- Proposals will have three parts:
 - 1. Scientific justification, to be peer reviewed as part of NRAO's current time allocation process
 - 2. Technical section describing personnel and expertise to be involved in the residency, to be reviewed by NRAO staff
 - 3. Budget specifying the level and nature of any support requested from NRAO; proposals that do not require Observatory support will have a substantial advantage over those that request NRAO resources

RSRO details

- Time available:
 - Up to 25% of the time available for astronomy will go to RSRO programs (~100 hours/month)
- Residency:
 - Minimum of one month of resident commissioning effort required for every 20 hours of time allocated, minimum residency of 3 months
 - May take place before the observations, but observers must be present for observations
 - An EVLA commissioning staff collaborator will not satisfy the residency requirement
 - Graduate students will not (in general) satisfy the residency requirement
 - Resident personnel will work under NRAO management with well-defined deliverables

RSRO capabilities: per subband, no recirculation

• In the end WIDAR will provide 64 completely independent subband pairs (independent tuning, bandwidth, pol'n products, etc.)

Sub-band BW (MHz)	Number of poln. products	Number of channels/poln product	Channel width (kHz)	Channel width (kms ⁻¹ at 1 GHz)	Total velocity coverage (kms ⁻¹ at 1 GHz)	
128	4	64	2000	600/v(GHz)	38,400/v(GHz)	
64	4	64	1000	300	19,200	
32	4	64	500	150	9,600	
16	4	64	250	75	4,800	
8	4	64	125	37.5	2,400	
4	4	64	62.5	19	1,200	
2	4	64	31.25	9.4	600	
1	4	64	15.625	4.7	300	
0.5	4	64	7.813	2.3	150	
0.25	4	64	3.906	1.2	75	
0.125	4	64	1.953	0.59	37.5	
0.0625	4	64	0.977	0.29	18.75	
0.03125	4	64	0.488	0.15	9.375	

RSRO capabilities: per subband, with recirculation

• In the end WIDAR will provide 64 completely independent subband pairs (independent tuning, bandwidth, pol'n products, numbers of channels, etc.)

Sub-band BW (MHz)00	Number of poln. products	Number of channels/poln product	Channel width (kHz)	Channel width (kms ⁻¹ at 1 GHz)	Total velocity coverage (kms ⁻¹ at 1 GHz)	
128	4	64	2000	600/v(GHz)	38,400/v(GHz)	
64	4	128	500	150	19,200	
32	4	256	125	37.5	9,600	
16	4	512	31.25	9.4	4,800	
8	4	1024	7.813	2.3	2,400	
4	4	2048	1.953	0.59	1,200	
2	4	4096	0.488	0.15	600	
1	4	8192	0.122	0.037	300	
0.5	4	16384	0.031	0.0092	150	
0.25	4	16384	0.015	0.0046	75	
0.125	4	16384	0.0076	0.0023	37.5	
0.0625	4	16384	0.0038	0.0011	18.75	
0.03125	4	16384	0.0019	0.00057	9.375	

Upcoming Proposal Deadlines

- VLA correlator will be turned off at the end of the next Dconfiguration, January 2010
 - see "EVLA Information for Astronomers" web page, at http://www.aoc.nrao.edu/evla/astro/
- Configuration cycle will also reverse at this time, from A→B→C→D to D→C→B→A
- June 1, 2009: proposal deadline for the last VLA D-configuration
- October 1, 2009: proposal deadline for the first EVLA Dconfiguration
- October 1, 2009: first call for RSRO proposals

Data Rates and Volumes

Driver		% time	Max rate (Mby/s)	Mean rate (Mby/s)	Volume (Tby/yr)
Now		100	.06	.02	0.5
PTC	Aug08	small	8	n/a	n/a
WIDAR0	Mar09	small	20	0.1	4
256 MHz bandwidth; 1024 channels max; 1 sec min dump (OSRO)	Mar10	90	0.23	0.08	2
2 GHz bandwidth; 8096 channels max; 0.1 sec min dump (RSRO)	Mar10	10	2	0.6	2
8 GHz bandwidth; 32384 channels max; 0.1 sec min dump; ~10 antennas with 3-bit samplers (RSRO)	Jun10	10	16	5	16
8 GHz bandwidth; 1048576 channels max; 0.1 sec min dump (RSRO)	Oct10	10	75	20	60
2 GHz bandwidth; 8096 channels max; 0.1 sec min dump (OSRO)	Jun11	90	2	0.6	20
8 GHz bandwidth; 1048576 channels max; 0.1 sec min dump (End of construction)	Jan13	100	75	20	600

Early testing indicates we should have no trouble supporting these data rates

Backup slides

•2:1 BANDWIDTH RATIOS...WITH LOTS OF CHANNELS
✓ Sensitivity
✓ UV-coverage

Rau, Owen, Cornwell, Eilek

•2:1 BANDWIDTH RATIOS...WITH LOTS OF CHANNELS

✓ Sensitivity

✓UV-coverage

- ✓ Spectral index & curvature
- ✓ Polarization & rotation measures
- ✓ Spectral lines & redshifts

H1743-322 (McClintock et al. 2007)

- •2:1 BANDWIDTH RATIOS...WITH LOTS OF CHANNELS
- ✓ Sensitivity
- ✓UV-coverage
- ✓ Spectral index & curvature
- ✓ Polarization & rotation measures
- ✓ Spectral lines & redshifts
- ✓ ...ALL THE TIME!

•2:1 BANDWIDTH **RATIOS...WITH** LOTS OF **CHANNELS** ✓ Sensitivity ✓UV-coverage ✓ Spectral index & curvature ✓ Polarization & rotation measures ✓ Spectral lines & redshifts ✓...ALL THE TIME!

NRAO

Project manager's summary

- Project is going well
- Financial health of the project is good
- Technical issues largely resolved
- Project is on schedule:
 - Antenna retrofits will be complete in Q3 CY2010
 - Receiver installation complete in Q4 CY2012
 - Correlator scheduled for completion in Q1 CY2010
 - Software development on track to support commissioning and early science

Correlator Rack Installation, EVLA Aug 2008

Correlator Room Infrastructure

Baseline 16-17~ 60 m

Cygnus A: MS-MFS

Cygnus A: MS-MFS

NRAO

Rau, Owen, Cornwell, Eilek

C and Ka Band Sensitivity Detail

- Sensitivity as a function of frequency:
 - Colored lines are derived via correlation coefficients
 - Black line with dots are from direct antenna measurements.

C and Ka-Band Cross-Polarization

- Antenna 'D-Term' polarization with the new OMT design close to the specs at C-band.
- Ka-band polarization, with waveguide OMT meets specs, except at the band edges.

Pol'n stability: C-Band

- N7027 is a planetary nebula no polarization is expected.
- D-Configuration. 4885 MHz. Data taken in pieces over 16 days.
- Phase self-calibration, flat amplitude calibration. Single polarization solution.

Polarization images are (nearly) noise-limited!

3C84 @ 22 GHz

- 21988-23012 MHz
- 8192 x 125 kHz (1.7 km/s)
- Full EVLA:
 - -8 GHz (BWR 1.5:1)
 - Full pol'n
 - -8192 x 1 MHz (14 km/s)

Recirculation: Orion water masers

- 64 MHz, x2 recirc.
 –31.25 kHz/channel
- 1.4% shown here