Tracing High Redshift Star Formation in the Current and Next Generation of Radio Surveys

Nick Seymour (MSSL/UCL)

3rd June 2009 - Panoramic Radio Astronomy
Deep 1.4GHz Source Counts

Seymour et al. 2004

1.4GHz flux density (mJy)
Methods to discriminate between AGN and star forming activity

• Radio morphology
• Radio spectral index/radio SED
• Radio variability
• Radio polarisation
• Flux density ratios/full SED modeling
Fraction of SFG at Faint Radio Flux Densities

Seymour et al. 2008
Fraction of SFG at Faint Radio Flux Densities

- 13H XDF - Seymour et al. 2008
- HDFN - Muxlow et al. 2005
- SXDF - Simpson et al. 2006
- COSMOS - Smolčić et al. 2008
- Lockman - Ibar et al. 2009
- ECDFS - Padovani et al. 2008

Fraction of SFGs

Flux density (mJy)
The Current and Next Generation of Surveys

By Isabella Prandoni

Major Deep Surveys @ 1.4 GHz (updated 2009)
The Current and Next Generation of Surveys

By Isabella Prandoni (plus my own estimates)
The Current and Next Generation of Surveys

By Isabella Prandoni (plus my own estimates)
The Current and Next Generation of Surveys

By Isabella Prandoni (plus my own estimates)
What science can we do with radio-selected star forming galaxies?
At high redshift we discover extreme starbursts in massive galaxies which we don’t see locally!
Radio: Seymour et al. (2008)
Other wavelengths: Hopkins (2004)

Radio results also show the rapid rise to $z=1-2$
Seymour et al. 2008b

IR/Luminosity Density = Star Formation Rate Density

Shaded region from Le Floc’h et al. (2005)
Does the radio luminosity/star formation rate density relation hold at high redshifts/luminosities?

This primarily depends on the IR-radio correlation.
Far-IR/Radio Correlation

Observed Flux Density Ratio

Local galaxy templates

Seymour et al. 2009
Far-IR/Radio Correlation

Observed Flux Density Ratio

\[q_{70} = \log\left(\frac{S_{70 \mu m}}{S_{1.4 \text{GHz}}}\right) \]

\[\text{redshift} \]

Seymour et al. 2009
Why might the 70um/radio correlation change at high redshift?

- Locally the IR SED is luminosity dependant?
- If high-z star forming regions in ULIRGs are more extended and hence be:
 - More optically thin and have less free-free absorption and therefore have a higher radio flux
 - Characterised by cooler IR dust SEDs and therefore have a lower 70um flux
The Link Between SCUBA, Spitzer and Herschel: Cold Galaxies at $z \leq 1$

Track from Rieke et al. (2008) templates

IRAS Bright Galaxy Sample

70µm selected sources

(Symeonidis et al., 2009, in press, astrophys/0905.0854)
What will *Herschel* see?
What does *BLAST* see?

![Graph showing flux ratios of local templates vs. redshift]
Conclusions

• Radio observations of the distant Universe used to study AGN, but we will now begin to get a full census of star formation from deep, wide radio surveys

• There are three crucial issues in exploiting such data:
 • distinguishing between AGN and SFG
 • calibrating the radio/SFR relation across all redshifts, radio luminosities and type of galaxy
 • obtaining redshifts from ancillary data

• The radio/IR relation appears to depend on IR SED and hence waveband. We must understand this locally before applying to high redshift.
Fin
Far-IR/Radio Correlation

Observed Flux Density Ratio

Seymour et al. 2009
Far-IR/Radio Correlation

Seymour et al. 2009
The link between IR SED and radio spectral index??
Structure of Talk

- Motivation to Observe in the Radio
- *Spitzer* Observations of High Redshift Radio Galaxies
- Extreme Starbursts at High Redshift
Structure of Talk

- Motivation to Observe in the Radio
- *Spitzer* Observations of High Redshift Radio Galaxies
- Extreme Starbursts at High Redshift