Evolution of Life

on. Exopplanets and SETI

Claudio Maccone

Director for Scientific Space Exploration, Intl. Acad. Astronautics,
Chair of the SETI Permanent Committee of the IAA, Associate, Istituto Naziónale di Ástrófisicia (INAF), Italy
E.mail.: clmaccon@libero.it Home Page : www.maccone.com

National NL SETI Meeting ASTRON, The Netherlands, March 15-16, 2016

ABSTRACT

SETI and ASTROBİOLOGY have long been regarded as two separate research fields. But the growing number of discovered exoplanets of various sizes and characteristics requires a CLASSIFICATION OF EXOPLANETS based on the question:

WHERE DOES AN EXOPLANET STAND ON ITS WAY TO DEVELOP LIFE ?

This author has tried to answer this question in a mathematical fashion by virtue of his "Evo-SETI". ("Evolution. and SETI") mathematical model described in this seminar.

This book introduces the Statistical Drake Equation where, from a simple product of seven positive numbers, the Drake Equation is turned into the product of seven positive random variables. The mathematical consequences of this transformation are demonstrated and it is proven that the new random variable N for the number of communicating civilizations in the Galaxy must follow the lognormal probability distribution when the number of factors in the Drake equation is allowed to increase at will.

Mathematical SEII also studies the proposed FOCAL (Fast Outgoing Cyclopean Astronomical Lens) space mission to the nearest Sun Focal Sphere at 550 AU and describes its consequences for future interstellar precursor missions and truly interstellar missions. In addition the author shows how SETI signal processing may be dramatically improved by use of the Karhunen-Loève Transform (KLT) rather than Fast Fourier Transform (FFT). Finally, he describes the efforts made to persuade the United Nations to make the centra part of the Moon Far Side a UN-protected zone, in order to preserve the unique radio-noise-free environment for future scientific use.

Mathematical SETI
 Statistics, Signal Processing, Space Missions

Claudio Maccone

$$
X(t)=\sum Z_{n} \phi_{n}(t)
$$

Springer

$(n \geq 0)$

$$
\text { with } 0 \leq t \leq T \text {. }
$$

$N=N s \cdot f p \cdot n e \cdot f l \cdot f \cdot f c \cdot f l$

TALK' S SCHEME . $1 / 2$

Part 1: The STATISTICAL DRAKE EQUATION

Part 2: Life as a: b-LOGNORMAL in time
Part 3: Darwinian
ExPONENTAL
GROWTH

Part 4: Geometric Brownian Motion (GBM) \because
Part:5: Darwinian EVOLUTION as a.GBM
Part 6: ENTROPY as EVOLUTION MEASURE

TALK' S SCHEME. 2/2

 Part 7: Aztecs vS, SpaniardsPart 8: Future up to 10 million years
Part 9: BIG History

Part 10: Mass ExINCHONS:

Part 1:

$$
\begin{aligned}
& \text { THE STATISTICAIL } \\
& \text { DRAKE EQUATION }
\end{aligned}
$$

The Classical Drake Equation $/ 1$:

- In . 1961 Fränk Drake introduced his famous "Drake equation" described at the web site http://en.wikipedia.org/wiki/Drake equation. It yields the number N of communicating civilizations in the Galaxy:

$$
N=N s \cdot f p \cdot n e \cdot f l \cdot f i \cdot f c \cdot f L
$$

DFrank Donald Drake (b. 1930)

The Classical Drake Equation $/ 2$:

The meaning of the seven factors in the Drake equation is well-known.

- The middle factor $f l$ is Darwinian Evolution:
.. $>$ In the classical Drake equation the seven factors are just POSITVE NUMBERS. And the equation simply is the PRODUCT of these seven positive numbers.
-It is claimed here that Drake's approach is too "simple-minded", since it does NOT yield: the ERROR BAR associated to each factor!
$>$ If we want to associate an ERROR BAR to each factor of the Drake equation then...
-... we must regard each factor in the Drake equation as a RANDOM VARIABLE.
- Then the number N of communicating civilizations also bectomes a random variable.
- This we call the STATISTICAL DRAKE :EQUATION and studied in our mentioned reference paper of 2010 (Acta Astronautica, Vol. 67 (2010), pages 1366-1383)

The STATISTICAL Drake.Equation /2.
D. Denoting each random variable by capitals, the STATISTICAL:DRAKE EQUATION reads

$$
N=\prod_{i=1}^{i} D_{i}
$$

Where the D sub i.("D from Drake"). are the 7 random variables; and N is a random. variable too ("to be determined"):

> Generallizing the STATISTICAL to ANY NUGMBE Equation OF FACTORS /1

- Consider the statistical.equation.

$>$ This is the generalization of. our. Statistical Drake Equation to the product of ANY finite NUMBER of ". positive random variables.

Is it possible to determine the statistics of N ?
$>$ Rather surprisingly j_{j} the answer is "yes" !

$$
\begin{aligned}
& \text { Generalizing the STATISTICAL } \\
& \text { to ANY NUGME Equation } \\
& \text { to } \\
& \text { OF FACTORS } / 2
\end{aligned}
$$

- First, you obviously take the natural log of both sides to change the finite product into a finite sum

\checkmark Second, to this finite sum one can apply the CENTRAL LIMIT THEOREM OF . STATISTICS. It :
- states that, in the limit for an infinite sum, the .distribution of the left-hand-side is NORMAL;
- This is true WHATEVER the distributions of the random variables in the sum MAY BE.

Generallizing the STATISTICAL. Drake Equation

- So, the random variable on the left is NORMAL, i.e.

$\ln (N)$

.. $>$ Thus, the random variable N under the log must be LOG-NORMAL and its distribution is determined!"
\triangle One must, however; determine the mean valué. . and variance of this log-normal distribution in terms of the mean values and variances of the 'factor random variables. This is DIFFICULT. But it can be done, for example, by a suitable numeric code that this author wrote in MathCad language.

$$
\text { lognormal_pdf }(n, \mu, \sigma)=\frac{e^{-\frac{(\log (n)-\mu)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi} \sigma n} \text {. }
$$

This pdf starts at $n=0$, that is: $0 \leq n \leq \infty$.
lognormal_pdf($\mathrm{n}, 0.9,0.7) 0$

Conclusion

The number of Signaling Civilizations

 is LOGNORMALLY distributed- Our Statistical Drake Equation; now Generalized to any number of factors, embodies as a special case the Statistical Drake Equation with just 7 factors.
..$>$ The conclusion is that the random variable N (the number of communicating ET Civilizations in the Galaxy) is LOG-NORMALLY distributed.
- The classical "old pure-number Drake value" of N is. now replaced by the MEAN VALUE of such a log:nọrmal diștribution.
- But we now also have an ERROR BAR around it !

Reference paper :

 .
The Statistical Drake Equation

$\checkmark \cdot$ Acta Astronaútica, V: 67 (2010), p. 1366-1383.

Acta Astronautica 67 (2010) 1366-1383

Contents lists available at ScienceDirect

Acta Astronautica

The Statistical Drake Equation

Claudio Maccone*

Part 2;

$$
\begin{gathered}
\text { b-LOGNORMALS } \\
\text { as the LIFE }
\end{gathered}
$$

of a cell, of an animal;

of a human, a civilization (f sub i) even ET (f sub L)

LIFE as a: PINIFE

The lifetime of a cell, an animal, a human, civilization can be modeled as a b-lognormal with tail REPLACED at senilicy by the descending T.ANGENT. The interception at time axis.is DEATH=d.

The equation of a INFINITE b-lognormal is :

$$
\text { b-lognormal_pdf }(t, \mu, \sigma, b)=\frac{e^{-\frac{(\log (t-b)-\mu)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi} \cdot \sigma \cdot(t-b)}
$$

This pdf only starts at time $b=$ birth, that is: $b \leq t \leq \infty$.
; The lifetime of a cell, an animal, a human, a civilization can be modeled as a FINITE b-lognormal: namely an infinite b-lognormal whose TAIL has been. REPLACED at : senility by the descending TANGENT STRAIGHT LINE. The interception of this. straight line at time axis is DEATH $=\dot{\mathrm{d}}$.

Let $\mathrm{a}=$ increasing inflexion, $\mathrm{s}=$ decreasing inflexion.
Then any b-lognormal has birth time (b), adolescence time (a), peak time (p) and

Rome's civilization: $b=-753, a=-146, p=59, s=235$: HISTORY FORMULAE' : GIVEN (b; s, d). it is always possible to compute the corresponding b-lognormal by virtue of the HISTORY FORMULAE :

$$
\begin{aligned}
& \sigma=\frac{d-s}{\sqrt{d-b} \sqrt{s-b}} \\
& \mu=\ln (s-b)+\frac{(d-s)(b+d-2 s)}{(d-b)(s-b)}
\end{aligned}
$$

LTFE as INFINITE b-LOGNORMAL
 Let $\mathrm{a}=$ increasing inflexion, $\mathrm{s}=$ decreasing inflexion.

Then any b-lognormal has birth time (b), adolescence time (a), peak time (p) and

Rome's civilization: $b=-753, a=-146, p=59,5 \div 235$:
b-lognormal of Rome's CIVILIZATION, 753 B.C. thru 476 A.D.

Years (B.C. = negative years, and A.D. = positive years)

- ANY. FINITE LTFE may be modeled as a b-lognormal with tail REPLACED at senility by the descending TANGENT. The interception at time axis iṣ DEATH=d.
(e.g. for Rome civilization one has $b=-753, d=476$)
b-lognormal of Rome's CIVILIZATION, 753 B.C. thru 476 A.D.

Years (B.C. = negative years, and A.D. = positive years)

FINITE b-lognormal of the GREEK CIVILIZATION (600 B.C. - 30 B.C.).

Years (B.C. = negative years)

$(753 \mathrm{BC}-235 \cdot \mathrm{AD}-47.6 \mathrm{AD}):$

FINITE b-lognormal of the CIVILIZATION OF ROME (753 B.C. - 476 A.D).

Years (B.C. = negative years)

ITALIAN RENAISSANGE (1250-1564-1660

FINITE b-lognormal of the ITALIAN RENAISSANCE CIVILIZATION (1250-1660).

PORTUGAL
 1419
 1999

FINITE b-lognormal of the PORTUGUESE CIVILIZATION (1419-1999).

FINITE b-lognormal of the SPANISH EMPIRE, 1492-1898.

FINITE b-lognormal of the FRENCH COLONIAL EMPIRE, 1525-1962.

Years

FINITE b-lognormal of the BRITISH EMPIRE, 1588-1973.

FINITE b-lognormal of the AMERICAN EMPIRE, 1898-2050.

Years

Two ENVELOPES for ALL CIVILIZATIONS (800 B.C. - 2200 A.D.).

Years (B.C. = negative years, A.D. = positive years)
Greece $600 \mathrm{BC}-30 \mathrm{BC}$
Rome 753 BC - 476 AD
Renaiss ance Italy 1250-1660
Portugal 1419-1974
Spain 1492-1898
France 1524-1962
Britain 1588-1974
— USA 1898-2050

- . . Greece-to-Britain EXPONENTIAL ENVELOPE
- Greece-to-USA EXPONENTIAL ENVELOPE
> Given TWO POINTS with coordinatés :

$$
\left(p_{1}, P_{1}\right) \text { and }\left(p_{2}, P_{2}\right)
$$

$$
B=\frac{\ln \left(\frac{P_{2}}{P_{1}}\right)}{p_{2}-p_{1}}
$$

Part 3:

Darwinian

EXPONENTIAL GROWTH as Locu's "of

:b-LOGNORMAL PEAKS

REFERENCE PAPER :

A Mathematical Model for Evolutión and SETI Origins of Lifé and Evolution of Biospheres (OLEB), Vol. 41 (2011), pages 609-619.

Orig Life Evol Biosph (2011) 41:609-619
DOI 10.1007/s11084-011-9260-3

EVOLUTIONARY PERSPECTIVES

A Mathematical Model for Evolution and SETI

Claudio Maccone

Darwinian EXPONENTIAL GROWTH

 Life on Earth evolved since 3.5 billion years ago. The number of Species GROWS EXPONENTIALLY: assume that today 50 million species live on EarthThen:

- Life on Earth evolved since 3.5 billion years ago.

The number of Species GROWS. EXPONENTIALLY: assume that today 50 million species live on Earth

Then:

$$
\text { exponential curve in time : } \quad E(t)=A e^{B t}
$$

with:

$$
\left\{\begin{array}{l}
A=50 \text { million species }=5 \cdot 10^{7} \text { species } \\
B=-\frac{\ln \left(E\left(t_{2}\right)\right)}{t_{1}}=-\frac{\ln \left(5 \cdot 10^{7}\right)}{-3.5 \cdot 10^{9} \text { year }}=\frac{1.605 \cdot 10^{-16}}{\mathrm{sec}} .
\end{array}\right.
$$

$$
\frac{e^{-\frac{(\log (t-b)-\mu)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi} \cdot \sigma \cdot(t-b)}
$$

This pdf only starts at time $b=b i r t h$, that is: $b \leq t \leq \infty$.
> b-lognormals are just lognormals starting at any instant b, supposed to be known.
b-lognormals are thus a family of probability density. functions with three real and positive parameters: $\boldsymbol{\mu}, \boldsymbol{\sigma}$, and b.

EXPONENTIAL as "ENVELOPE" of ., b-LOGNORMALS

- Each b-lognormal has its peak on the exponential. - PRACTICALLY an "Envelope"; though not so formally.

$$
\left\{\begin{array}{l}
\text { b-lognormal peak abscissa } \equiv p=b+e^{\mu-\sigma^{2}} \\
\text { b-lognormal peak ordinate } \equiv P=\frac{e^{\frac{\sigma^{2}}{2}-\mu}}{\sqrt{2 \pi} \sigma}
\end{array}\right.
$$

It is POSSIBLE to match the second equation.
\because (peak ordinate) with the EXPONENTIAL curve of the increasing number of Species upon setting:
(exponential ordinate at $t=p$ reads: $\quad E(p)=A e^{B p}$ b-lognormal peak ordinate at $t=p: \quad P=\frac{e^{\frac{e^{2}-\mu}{}}}{\sqrt{2 \pi} \sigma}$
.. \downarrow We noticed that it is POSSIBLE to MATCH these two equations EXACTLY just upon setting:

$$
\left\{\begin{array}{l}
A=\frac{1}{\sqrt{2 \pi} \sigma} \\
B p=\frac{\sigma^{2}}{2}-\mu .
\end{array}\right.
$$

Moreover, the•last two equations can be INVERTED, i.e. solved for μ and σ EXACTLY, thus yielding:

These two equations prove that, knowing the exponential (i.e. \boldsymbol{A} and \boldsymbol{B}) and peak time $\boldsymbol{p}_{\text {, }}$ the blognormal HAVING ITS PEAK EXACTLY ON THE EXPONENTIAL is perfectly determined (i.e. its μ and $\boldsymbol{\sigma}$ are perfectly determined given $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{p}. This is the BASIC RESULT to make further progress.

? Part 4:

GंEOMETRIC.

BROWNIAN •MOTHON

This process in NOT a Brownian Motion since its probability density function is a LOGNORMAL, and NOT A GAUSSIAN!

So, the pdf ranges between ZERO and INFINITY, and NOT between : minus infinity and plus infinity!! : Périod.

GEOMETRIC :BROWNIAN . MOÖION

 (GBM): exponential mean valueGeometric Brownian Motion
 $(G B M)$ exponential mean value :

$$
\langle N(t)\rangle=N_{0} e^{\mu t} .
$$

GEOMETRIC
BROWNIAN lognormal probability density:
$N(t) _\operatorname{pdf}\left(n, N_{0}, \mu, \sigma, t\right)=$ $-\frac{\left[\ln (n)-\left(\ln N_{0}+\mu t-\frac{\sigma^{2} t}{2}\right)\right]^{2}}{2 \sigma^{2} t}$
$\sqrt{2 \pi} \sigma \sqrt{t} n$

$$
\left\{\begin{array}{c}
t=1 \\
\sigma_{G B M}=\sigma_{\text {Drake }}=\sigma \\
\mu_{G B M}=\mu_{\text {Drake }}=\mu \\
N_{0}=e^{\frac{\sigma^{2}}{2}}
\end{array}\right.
$$

The two lognormals (of movie \& picture) then COINCIDE.

1) The CLASSICAL DRAKE EQ. is ST.ATIC, and is a SUBSET of the STATISTICAL DRAKE EQUATION.
2) In turn, the STATISTICAL DRAKE EQUATION is the STATIC VERSION (i.e. the STILL PICTURE) of the GEOMETRIC BROWNIAN MOTION (the MOVIE).

Part 5:

Darwinian EXPONE, ETIAL

GROWTH

as GBM in the number: of LIVING Species

THREE REFERENCE PAPERS

- A Mathematical Model for Evolution and SETI

Origins of Life and Evolution of Biospheres (OLEB), Vol. 41 (2ं011), pages 609-619.

Orig Life Evol Biosph (2011) 41:609-619
DOI 10.1007/s11084-011-9260-3
EVOLUTIONARY PERSPECTIVES

A Mathematical Model for Evolution and SETI

Claudio Maccone

$>$ SETI, Evolution and Hüman History Merged

 into a Mathematical Model.
International Journal of ASTROBIOLOGY,
 *
 Vol. 12, issue 3 (2013), pages 218-245.

International Journal of Astrobiology 12 (3): 218-245 (2013) doi:10.1017/S1473550413000086
© Cambridge University Press 2013. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence < http://creativecommons.org/licenses/by-nc-sa/2.5/>. The written permission of Cambridge University Press must be obtained for commercial re-use.

SETI, Evolution and Human History Merged into a Mathematical Model

Claudio Maccone
International Academy of Astronautics (IAA), Via Martorelli, 43, Torino (Turin) 10155, Italy
e-mail: clmaccon@libero.it and claudio.maccone@iaamail.org

Evolution and. History in a new.

- "Mathematical SETI" model.

- ACTA ASTRONAUTICA; in préss, "(2014),
pages 317-344. Online August 13, 2013 .

```
Acta Astronautica I (min) III-III
```

Contents lists available at ScienceDirect
Acta Astronautica
journal homepage: www.elsevier.com/locate/actaastro

Academy Transactions Note
Evolution and History in a new "Mathematical SETI" model
Claudio Maccone*

$$
\begin{aligned}
& \text { Part 6! } \\
& \text { ENTROPY }
\end{aligned}
$$ as the

EVOLUTION MEASURE

$$
\begin{aligned}
H=-\int_{-\infty}^{\infty} f_{X}(x) & \cdot \log _{2}\left[f_{X}(x)\right] d x= \\
& =-\frac{1}{\ln 2} \int_{-\infty}^{\infty} f_{X}(x) \cdot \ln \left[f_{X}(x)\right] d x
\end{aligned}
$$

Shannon ENTROPY fọr .b-lognormals (in bits) :

$$
H_{\mathrm{b}_{-} \text {lognormal_in_bits }}(\mu, \sigma)=\frac{1}{\ln 2}\left[\ln (\sqrt{2 \pi} \sigma)+\mu+\frac{1}{2}\right]
$$

But μ ONLY is a function of the peak abscissa p :

$$
\left\{\begin{array}{l}
\sigma=\frac{1}{\sqrt{2 \pi} A} \\
\mu(p)=-B p+\frac{1}{4 \pi A^{2}}
\end{array}\right.
$$

> Shannon ENTROPY for the b-lognormal in bits :

$$
\begin{aligned}
H_{\mathrm{b}_{-} \text {lognormal_in_bits }}(p) & =\frac{1}{\ln 2} \cdot[\mu(p)+\text { part_not_depending_on_} \mathrm{p}]= \\
& =-\frac{B}{\ln 2} \cdot p+\text { another_part_not_depending_on_p. }
\end{aligned}
$$

The ENTROPY DIFFERENCE among any two
Civilizations having their two peak abscissae at p sub 1 and p sub 2 is given by.

$4.037647300902755810^{-10}$ sec

ENTROPY IS THUS A MEASURE OF THE LEVEL OF PROGRESS REACHED BY EACH CIVILIZATION.

ENTROPY DIFFERENCE measures the DIFFERENCE•in civilization lével among any two Cịvilizations.

- If it is known WHEN the two Civilizations reached their two peaks, the above formula yields their

The DIFFERENCE in Civilization Level between the . Spaniard and Aztecs in 1519 was about 3.84 bits per individual.

The DIFFERENCE in Civilization Level between a Victorian Briton and a Pericies Greek was about 1,76 bits per individual.

The DIFFERENCE in Civilization Level between Humanity and the first Alien Civilization is UNKNOWN; of course, but...
but now we have a Mathematical Theory to ESTIMATE IT on the basis of the messages we get.

EVOLUTION DIFFERENC

The DIFFERENCE in Darwinian Evolution between two species on Earth is given by the same equation

As for the DIFFERENCE in Civilization Level, except we must now use the different numerical value of B the enveloping Darwinian exponential, found earlier. :

The result is that the DIFFERENCE IN EVOLUTION LEVEL between the first living being 3.5 billion years ago and Humans living now is about 25.57 bits per individual.

: Part 7:

$$
\begin{gathered}
\text { Example in the pASt } \\
\text { namely }
\end{gathered}
$$

AZTECS vs. SPANIARDS

Greece-to-Spain ENVELOPE and ALL CIVILIZATIONS (3800 B.C. - 2200 A.D.).

Years (B.C. = negative years, A.D. = positive years)
Greece 600 B.C. - 30 B.C.
Rome 753 B.C. - 476 A.D.
Renaissance Italy 1250-1660
Portuguese Empire 1419-1974
Spanish Empire 1492-1898
French Empire 1524-1 962
British Empire 1588-1974
USA Empire 1898-2050 (?)
-•• Greece-to-Spain EXPONENTIAL ENVELOPE

- - Virtual-Aztec Empire 3694 BC - 2627 BC

True-Aztec Empire 1325-1519
$-3500=p_{V A}=b_{V A}+e^{\mu_{V A}-\sigma_{V A}^{2}}$

Greece_to_Spain_EXPONENTIAL =

$$
\text { Numerically_known }=\left(p_{V A}-b_{V A}\right) P_{V A}=\frac{e^{-\frac{\sigma_{V A}^{2}}{2}}}{\sqrt{2 \pi} \sigma_{V A}} \text {. }
$$

$$
=7.305 \cdot 10^{-4}=P_{V A}=\frac{e^{\frac{\sigma_{V A}^{2}}{2}-\mu_{V A}}}{\sqrt{2 \pi} \sigma_{V A}}
$$

Numerically_known $=\left(p_{V A}-b_{V A}\right) P_{V A} \approx \frac{1-\frac{\sigma_{V A}^{2}}{2}}{\sqrt{2 \pi} \sigma_{V A}}$.

$$
\sigma_{V A}^{2}+2 \sqrt{2 \pi}\left(p_{V A}-b_{V A}\right) P_{V A} \sigma_{V A}-2=0 .
$$

$\sigma_{V A}=-\sqrt{2 \pi}\left(p_{V A}-b_{V A}\right) P_{V A} \pm \sqrt{2} \sqrt{\pi\left(p_{V A}-b_{V A}\right)^{2} P_{V A}^{2}+1}$

$$
\mu_{V A}=\sigma_{V A}^{2}+\ln \left(p_{V A}-b_{V A}\right)
$$

Renaissance Italy, Portuguese and Spanish Empires and TRUE-AZTECS (1300-1520).

Years (B.C. $=$ negative years, A.D. $=$ positive years)
: Part 8:

Example fin the FUTURE up to :
 10 MILLION YEARS

Greece-to-USA and Greece-to-Britain EXPONENTIALS

Years (B.C.= negative years, A.D.= positive years)

A_GB $:=0.0031332506554731$
B_GB $:=\frac{5.30910243595703390^{-4}}{\mathrm{yr}}$
E_GB(t) $:=A _G B \cdot e^{B _G B \cdot t \cdot y r}$

A_US :=0.0033528127662929
B_US: $:=\frac{6.86847304707991670^{-4}}{\mathrm{yr}}$
E_US(t) $:=A _U S \cdot e^{B _U S \cdot t \cdot y r}$

ENTROPY in the PAST for. US \& GB

ENTROPY IN THE PAST for Britain and USA

$\Delta \mathrm{H}_{-} \mathrm{in}_{-}$bits_GB $(\mathrm{p}):=-\frac{\mathrm{B}_{-} \mathrm{GB}}{\ln (2)} \cdot(\mathrm{p}+434) \cdot \mathrm{yr}$
$\Delta \mathrm{H}_{-}$in_bits_US $(\mathrm{p}):=-\frac{\mathrm{B} _\mathrm{US}}{\ln (2)} \cdot(\mathrm{p}+434) \cdot \mathrm{yr}$

Exps EXTRAPOLATFD to 10,000 AD

EXPONENTIALS EXTRAPOLATED up to 10,000 A.D.

Years (these are all A.D. years)

ENTROPY IN THE FUTURE up to 10,000 A.D.

EXPONENTIALS EXTRAPOLATED up to 100,000 A.D.

Years between 0 (Christ born) and 100,000

ENTROPY EXTRAPOLATED up to 100,000 A.D.

Years between 0 (Christ born) and 100,000

EXTRAPOL. To

$$
\operatorname{E} _G B\left(10^{6}\right)=1.168 \times 10^{228}
$$

$$
\operatorname{EZUS}\left(10^{6}\right)=6.598 \times 10^{295}
$$

EXPONENTIALS EXTRAPOLATED up to 1 million A.D.

$0 \times 10^{0} \quad 1 \times 10^{5} \quad 2 \times 10^{5} \quad 3 \times 10^{5} \quad 4 \times 10^{5} \quad 5 \times 10^{5} \quad 6 \times 10^{5} \quad 7 \times 10^{5} \quad 8 \times 10^{5} \quad 9 \times 10^{5} \quad 1 \times 10^{6}$
Years between 0 (Christ born) and 1 million A.D.
$\Delta H _i n _b i t s _G B\left(10^{6}\right)=-766.274$

ENTROPY EXTRAPOLATED up to 1 million A.D.

Years between 0 (Christ horn) and 1 million A D

-FUTURE ENTROPY To 10 MILLIONAD

$\Delta H _i n _b i t s _G B\left(10^{7}\right)=-7.66 \times 10^{3} \quad \Delta H _i n _b i t s _U S\left(10^{7}\right)=-9.91 \times 10^{3}$

ENTROPY EXTRAPOLATED up to 10 million A.D.

Years between 0 (Christ born) and 10 million A.D.

FERMI PARADOX (22.M-year̈s): An estimate of how many bits/ individual of EVOLUTION

- are needed to settle the Galaxy.

Humans would be able to colonize the whole Galaxy only if they could improve themselves by some 10,000 bits/ individual. This is about 400 times the 25 bits/individual improvement that Nature took on Earth to evolve over 3.5 billion years. Also, no other Alien Civilization would have to . interfere, which is' highly unlikely! Thus; our mathematical theory is crucial to estimate how much Aliens. will be more advanced than Humans, when SETI succeeds.

THREE REFERENCE PAPERS

- A Mathematical Model for Evolution and SETI

Origins of Life and Evolution of Biospheres (OLEB), Vol. 41 (2ं011), pages 609-619.

Orig Life Evol Biosph (2011) 41:609-619
DOI 10.1007/s11084-011-9260-3
EVOLUTIONARY PERSPECTIVES

A Mathematical Model for Evolution and SETI

Claudio Maccone

$>$ SETI, Evolution and Hüman History Merged

 into a Mathematical Model.
International Journal of ASTROBIOLOGY,
 *
 Vol. 12, issue 3 (2013), pages 218-245.

International Journal of Astrobiology 12 (3): 218-245 (2013) doi:10.1017/S1473550413000086
© Cambridge University Press 2013. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence < http://creativecommons.org/licenses/by-nc-sa/2.5/>. The written permission of Cambridge University Press must be obtained for commercial re-use.

SETI, Evolution and Human History Merged into a Mathematical Model

Claudio Maccone
International Academy of Astronautics (IAA), Via Martorelli, 43, Torino (Turin) 10155, Italy
e-mail: clmaccon@libero.it and claudio.maccone@iaamail.org

Evolution and. History in a new.

- "Mathematical SETI" model.

- ACTA ASTRONAUTICA; in préss, "(2014),
pages 317-344. Online August 13, 2013 .

```
Acta Astronautica I (min) III-III
```

Contents lists available at ScienceDirect
Acta Astronautica
journal homepage: www.elsevier.com/locate/actaastro

Academy Transactions Note
Evolution and History in a new "Mathematical SETI" model
Claudio Maccone*
 Milky Way) evolved since, say, 10 billion years ago.
$t_{\text {START }}=-10 \times 10^{9}$ years.
$\left\langle N_{\text {INCREASING }}\left(t_{\text {START }}\right)\right\rangle=1$

Mean value

GBM two parameters: μ and σ

$$
\mu=\frac{\ln \left(N_{0}\right)}{-t_{S T A R T}}
$$

BIG HIS:ORY: is a GBM in the . increasing number of Civilizations

Time in billions of years

Time in billions of years

MASS decreasing number of living species

DECREASING number of species during the K-Pg MASS EXTINCTION

Time in million years (ago)

MASS EXCTICTION: a GBM in the decreasing number of SPECIES

 The K-Pg IMPACT was 64 billion years ago. Suppose that its NUCLEAR WINTER lasted 1000 years:$$
t_{\text {Impact }}=-64 \times 10^{6} \text { years } .
$$

$$
t_{\mathrm{End}}=-63.999 \times 10^{6} \text { year. }
$$

$$
t_{\text {end }}-t_{\text {Impact }}=1000 \text { year }
$$

In addition to the above two inputs; we must assign the following three more inputs:

$$
N_{\text {Impact }}=100 .
$$

$$
N_{\text {End }}=30 .
$$

$$
\delta N_{\text {End }}=10
$$

decreasing number of SPECIES

Then, the GBM mean value is given by:

mean_value $(t)=N_{\text {Impact }} e^{\mu\left(t-t_{\text {Impact }}\right)}$

- While the GBM lognormal's μ and σ are given by:

$$
\mu=-\frac{\ln \left(\frac{N_{\text {Impact }}}{N_{\text {End }}}\right)}{t_{\text {End }}-t_{\text {Impact }}}
$$

decreasing number of SPECIES

Finally the GBM upper and lower STANDARD
DEVIATION CURVES are given by, respectively:
st_dev_curves $(t)=N_{\text {Impact }} e^{\mu\left(t-t_{\text {Impact }}\right)}\left[1 \pm \sqrt{e^{\sigma^{2}\left(t-t_{\text {Impact }}\right)}-1}\right.$

While the upper standard deviation curve has its maximum at the time:

$$
t_{\text {Impact }}+\frac{1}{\sigma^{2}} \cdot \ln \left[\frac{2 \mu\left(\sqrt{\mu^{2}-2 \mu \sigma^{2}-\sigma^{4}}\right)+\sigma^{2}+3 \mu}{\left(\sigma^{2}+2 \mu\right)^{2}}\right]
$$

MASS decreasing number of living species

DECREASING number of species during the K-Pg MASS EXTINCTION

Time in million years (ago)

CONCLUSIONS

1) We developed here a new mathematical model embracing all of Big History, including Darwinian Evolution (RNA to Humans), Human History (Aztecs to USA) and then we'extrapolated even that that into the future up to 10 million years; the minimum .time requested for a civilization to expand to the whole Milky Way (Fermi paradox).
2) Our mathematical model is based on the properties of lognormal probability distributions. It also is fülly compatible with the Statistical Drake Equations, i.e. the foundational : equation of SETI, the Search for Extra-Terrestrial Intelligence.
3) Merging all these apparently differènt topics into the larger but' single topic called Big History is the achievement of this paper. As such, our statistical theory would be crucial to estimate how much more advanced than Humans the Aliens would be when SETI scientists will succeed in 'finding the first E.T Civilization.

Thank you very much !

