Mathematical SETI

Statistics, Signal Processing, Space Missions

Mathematical SETI

Statistics, Signal Processing, Space Missions

Dr. Claudio Maccone
International Academy of Astronautics and Istituto Nazionale di Astrofisica
Via Martorelli 43-10155 Torino (Turin)
Italy
Email: clmaccon@libero.it

Front cover: (Upper right) Some of the 42 six-meter dishes now making up the Allen Telescope Array (ATA) at Hot Creek Radio Observatory in northern California, U.S.A. (courtesy: SETI Institute). (Lower left) Artist concept of the 500-meter Arecibo-like FAST radiotelescope, now under construction in Guizhou Province, southwest China (courtesy: Professor Rendong Nan).

```
SPRINGER-PRAXIS BOOKS IN ASTRONOMY AND PLANETARY SCIENCES
SUBJECT ADVISORY EDITOR: John Mason, M.B.E., B.Sc., M.Sc., Ph.D.
```

ISBN 978-3-642-27436-7 e-ISBN 978-3-642-27437-4
DOI 10.1007/978-3-642-27437-4
Springer Heidelberg Dordrecht London New York
Library of Congress Control Number: 2011944195
(C) Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Jim Wilkie
Project management: OPS Ltd., Gt. Yarmouth, Norfolk, U.K.
Printed on acid-free paper
Springer is part of Springer Science + Business Media (www.springer.com)

Contents

Preface xvii
Acknowledgments and dedication. xxxv
Foreword xxxvii
Foreword by Giovanni Bignami xxxix
List of figures xliii
List of tables xlix
List of abbreviations and acronyms $1 i$
PART I SETI STATISTICS 1
1 The statistical Drake equation 3
1.1 Introduction to SETI 3
1.2 The key question: How far away are they? 4
1.3 Computing N by virtue of the Drake equation (1961) 7
1.4 The Drake Equation is over-simplified 10
1.5 The statistical Drake equation 11
1.6 Solving the statistical Drake equation by virtue of the Central Limit Theorem (CLT) of statistics 13
1.7 An example explaining the statistical Drake equation 14
1.8 Finding the probability distribution of the ET_Distance by virtue of the statistical Drake equation 17
1.9 The "Data Enrichment Principle" as the best CLT consequence upon the statistical Drake equation (any number of factors allowed) 20
1.10 Conclusions 20
1.11 Acknowledgment 21
1.A Proof of Shannon's 1948 theorem stating that the uniform distribution is the "most uncertain" one over a finite range of values 21
1.B Original text of the author's paper \#IAC-08-A4.1.4 entitled "The statistical Drake equation" 23
1.C Original PowerPoint presentation of the author's paper \#IAC- 08-A4.1.4 entitled the statistical Drake equation 62
1.D Statistical Drake equation 65
1.12 References 72
2 Letting Maxima do the calculations 73
2.1 A new way of publishing mathematical books 73
2.2 A short history of "Macsyma" (1968-present) 74
2.3 A short history of "Maxima" (1982-present) 78
2.4 A famous example of Macsyma correcting human errors 79
2.5 First Maxima example: Lognormal properties up to kurtosis 79
2.6 Second Maxima example: Correcting the author's wrong equation for the skewness of both the lognormal and Maccone distributions published between 2008 and 2011 80
2.7 Third Maxima example: Number of protons and neutrons in Einstein's static universe 81
2.8 Reference 84
3 How many planets for man and aliens? 111
3.1 Habitable planets for man 111
3.2 The statistical Dole equation 113
3.3 The number of habitable planets for man in the Galaxy follows the lognormal distribution 114
3.4 The distance between any two nearby hospitable planets follows the Maccone distribution 114
3.5 A numerical example: Some 100 million habitable planets exist in the Galaxy! 114
3.6 Distance (Maccone) distribution of the nearest habitable planet to us according to the previous numerical input 117
3.7 Comparing the statistical Dole and Drake equations: Number of habitable planets vs. number of ET civilizations in this Galaxy 118
3.8 SEH, the "statistical equation for the habitables" is just the statistical Dole equation 119
3.9 Conclusions 119
3.A Statistical Dole equation 120
3.10 Bibliography 129
4 Statistical Fermi paradox and Galactic travels 131
4.1 The classical coral model of Galactic colonization 131
4.2 The classical Fermi paradox (1950) 134
4.3 The statistical coral model of Galactic colonization 135
4.4 Finding the probability distribution of the overall time needed to colonize the whole Galaxy 137
4.5 Conclusions 143
4.6 Acknowledgments 144
4.7 References 144
5 How long does a civilization live? 145
5.1 Two examples of the statistical Drake equation related to the lifetime $f L$ of a technological civilization. 145
5.2 Example \#1: a technological civilization lasting only 45 of the 4.5 billion years of our earth, such as humanity 145
5.3 Example \#2: a technological civilization lasting 90 million out of 9 billion years of their sun's lifetime 145
5.4 Example \#1 rewritten in the language of the statistical Drake equation 146
5.5 Example \#2 rewritten in the language of the statistical Drake equation 149
5.6 Conclusions 152
5.7 Acknowledgments 152
5.8 References 153
6 Life-span modeling by finite \boldsymbol{b}-lognormals 155
6.1 Introducing b-lognormals as our model for all life-spans 155
6.2 Adolescence $(t=a)$ and senility $(t=s)$ points of b-lognormals (in other words, their two inflexion points) 156
6.3 Finding the b-lognormal from the ordinates of its two inflexion points plus either a or s 157
6.4 Finding the b-lognormal from the birth (b), adolescence (a), and senility (s) abscissae 158
6.5 Finding (approximately) the b-lognormal from its peak only: that is, given its abscissa p and ordinate P 159
6.6 Finding the b-lognormal from the birth (b), adolescence (a), and peak (p) abscissae 160
6.7 Finite b-lognormals: defining the death time (d) 160
6.8 Finding the b-lognormal given the times of birth $(t=b)$, senility ($t=s$), and death $(t=d)$. 162
6.9 Finding the death time (d) from birth (b), peak (p), and senility (s). 162
6.10 Finding the probability of the length of someone's life; that is, the area under the relevant finite b-lognormal 163
7 Civilizations as finite b-lognormals: Mathematical history 185
7.1 Introduction 185
7.2 Examples of historic civilizations as finite b-lognormals 185
7.3 Plotting all b-lognormals together and finding the trends 187
7.3.1 All Western civilizations (Greek to U.S.) as finite b - lognormals 188
7.4 Finding the exponential envelopes of all b-lognormals 188
$7.5 \quad b$-lognormals of future civilizations 190
7.6 References 190
7.A Civilizations as finite b-lognormals 192
8 Darwinian exponential growth and cladistics 215
8.1 Introduction: Evolution of life on Earth and the statistical Drake equation 215
8.2 Evolution as exponential increase in the number of living species 215
8.3 Introducing the darwin (d) unit, measuring the amount of evolution that a given species reached 217
8.4 Darwinian exponential as the envelope of all b-lognormals, each representing a different species triggered by evolution at the time $t=b>0$ (cladistics) 218
8.5 Cladogram branches constructed of increasing, decreasing, or stable (horizontal) exponential arches 219
8.6 KLT filtering in the Hilbert space and Darwinian selection are the same thing in our theory 222
8.7 Conclusion 222
8.8 References 237
8.9 Further reading 237
9 Societal statistics by the statistical Drake equation 239
9.1 Introduction: Breaking down the Drake equation so as to isolate its societal part 239
9.2 The probability distribution of the ratio of two lognormally distributed random variables 240
9.3 Breaking the Drake equation down into the Dole equation times the societal part 244
9.4 Conclusions 245
9.5 References 246
10 Cubics of historical recovery 247
10.1 Introduction 247
10.2 History of astronomy as a cubic 248
10.3 Casting Aristarchus and Copernicus into equations 249
10.4 The scientifically "true or false" convention 251
10.5 What is the real meaning of the cubic's vertical axis? 253
10.6 Determining the cubic in terms of $M t$ and Rt only 254
10.7 Normalizing the cubic to -1 (i.e., in recession or falsity units). 257
10.8 History of astronomy normalized in falsity units (i.e., units at the very depth of the Dark Ages). 258
10.9 History of SETI as a cubic 259
10.10 Extrapolating the two cubics to the invention of the warp drive (2067 AD?) 262
10.11 Extrasolar planets since 1995 264
10.12 History of extrasolar planet discoveries in our cubic model 265
10.13 Matching (the two cubics of) SETI and exoplanets! 265
10.14 History of the unification of Europe as a cubic 266
10.15 Human life expectancy cubic 269
10.16 Is the "force" behind progress increasing linearly in time? 274
10.17 Conclusion 274
10.18 Acknowledgment 274
10.19 References 274
10.A Solution of four simultaneous linear algebraic equations 276
10.B "Life_Expectancy_Cubic_v09_October_6_2011.xmcd1". 286
11 Exponential evolution in time as a geometric Brownian motion 293
11.1 Introduction 293
11.2 Our statistical Drake equation is the static special case of $N(t)$ 295
11.3 The $N(t)$ stochastic process is a geometric Brownian motion 296
11.4 Properties of the $N(t)$ geometric Brownian motion 296
11.5 The new stochastic process $D(t)$ yielding the civilization distance in time 301
11.6 GBM as the exponentially increasing number of habitable planets 304
11.A Appendix 307
PART II SPACE MISSIONS TO EXPLOIT GRAVITATIONAL LENSING 333
12 So much gain at 550 AU 335
12.1 Introduction 335
12.2 The minimal focal distance of 550 AU for electromagnetic waves 336
12.3 The (antenna) gain of the gravitational lens of the Sun 339
12.4 The combined, total gain on the FOCAL spacecraft 341
12.5 The image size at the spacecraft distance z 342
12.6 Requirements on the image size and antenna beamwidth at the spacecraft distance z 343
12.7 Angular resolution at the spacecraft distance z 344
12.8 Spatial resolution at the spacecraft distance z 345
12.9 References 345
13 FOCAL mission to $1,000 \mathrm{AU}$ as an interstellar precursor 349
13.1 Introduction 349
13.2 The author's 2009 book about the FOCAL space mission 349
13.3 Using two antennas and a tether to get a much larger field of view for FOCAL 350
13.4 Observing the Galactic Black Hole magnified by virtue of FOCAL 353
13.5 Observing the three Alpha Centauri stars magnified by virtue of FOCAL 354
13.6 Observing extrasolar planets magnified by virtue of FOCAL 358
13.7 Conclusion 359
13.8 References 359
14 Belt of focal spheres between 550 and $17,000 \mathrm{AU}$ 361
14.1 Introduction 361
14.2 From the Sun to the planets: all as gravitational lenses 362
14.3 (Antenna) gain of the gravitational lenses of the Sun and planets 366
14.4 Kraus gain vs. Drake gain: which one is right? 367
14.5 Drake gain vs. Kraus gain for the (naked) Sun, Jupiter, and Earth 369
14.6 Using the lenses of all planets to sweep across the sky in search of exoplanets. 373
14.7 Conclusions 374
14.8 References 374
15 Galactic Internet by star gravitational lensing 377
15.1 Introduction 377
15.2 The radio link 377
15.3 Bit error rate at the Alpha Centauri distance enhanced by the magnification provided by the Sun's gravity lens and the FOCAL space mission 381
15.4 The radio bridge between the Sun and α Cen A using their gravitational lenses 383
15.5 The radio bridge between the Sun and Barnard's Star using their gravitational lenses 386
15.6 The radio bridge between the Sun and Sirius A using their gravitational lenses 386
15.7 The radio bridge between the Sun and another Sun-like star located at the Galactic Bulge using their gravitational lenses 388
15.8 The radio bridge between the Sun and another Sun-like star located inside the Andromeda Galaxy (M31) using their gravita- tional lenses 389
15.9 Conclusion 390
15.10 Acknowledgment 391
15.11 References 391
16 Extragalactic Internet by black hole gravitational lensing 393
16.1 An Introduction to SETI between galaxies by exploiting the supermassive black holes located inside each galaxy as magnify- ing gravitational lenses 393
16.2 Radio bridges between the supermassive black hole of the Milky Way Galaxy (Sgr A*) and others 394
16.3 The radio bridge between $\mathrm{Sgr} \mathrm{A}^{*}$ and the M31 Andromeda Galaxy's P2 black hole 396
16.4 The radio bridge between $\mathrm{Sgr} \mathrm{A}^{*}$ and the dwarf elliptical galaxy M32 small satellite of Andromeda 398
16.5 The radio bridge between Sgr A* and the M106 galaxy (NGC 4258) half way between Andromeda and the Virgo Supercluster Center (M87) 399
16.6 The radio bridge between Sgr A* and the M104 Sombrero Galaxy (NGC 4594) again half way between Andromeda and the Virgo Supercluster Center (M87) 402
16.7 The radio bridge between $\mathrm{Sgr} \mathrm{A}^{*}$ and the M87 Supergiant Elliptical Galaxy (NGC 4486) at the Virgo Supercluster Center 403
16.8 Conclusions 406
16.9 References 407
PART III KLT FOR OPTIMAL SIGNAL PROCESSING 409
17 A simple introduction to the KLT and BAM-KLT 411
17.1 Introduction 411
17.2 A bit of history 411
17.3 A heuristic derivation of the KL expansion 412
17.4 The KLT finds the best basis (eigen-basis) in the Hilbert space spanned by the eigenfunctions of the autocorrelation of $X(t)$ 415
17.5 Continuous time vs. discrete time in the KLT 417
17.6 The KLT: just a linear transformation in the Hilbert space 418
17.7 A breakthrough about the KLT: Maccone's "Final Variance" Theorem 419
17.8 BAM ("Bordered Autocorrelation Method") to find the numeric KLT of stationary processes only 422
17.9 Developments in 2007 and 2008 428
17.10 KLT of stationary white noise 429
17.11 KLT of an ET sinusoidal carrier buried in white, cosmic noise 430
17.12 Analytic proof of the BAM-KLT 432
17.13 KLT signal-to-noise ratio (SNR) as a function of the final T, eigenvalue index n, and alien frequency ν 434
17.14 Global Navigation Satellite Systems (GNSS) improved by the KLT 435
17.15 How to eavesdrop on alien chat 436
17.16 Conclusions 437
17.17 Acknowledgments 438
17.18 References 438
17.19 Annotated bibliography 439
18 KLT of radio signals from relativistic spaceships in uniform and deceler- ated motion 449
18.1 Introduction 449
18.2 Uniform motion 453
18.3 Decelerated motion 456
18.4 Checking the KLT of decelerated motion by Matlab simulations 462
18.5 Total energy of the noisy signal from relativistic spaceships in decelerated and uniform motion 463
18.6 Independence Day movie: exploiting the KLT to detect an alien spaceship approaching the Earth in decelerated motion 467
18.7 References 468
19 KLT of radio signals from relativistic spaceships in hyperbolic motion 471
19.1 Introduction 471
19.2 Hyperbolic motion 471
19.3 Total energy of signals from relativistic spaceships in hyperbolic motion 473
19.4 KLT for signals emitted in asymptotic hyperbolic motion 474
19.5 Checking the KLT of asymptotic hyperbolic motion by Matlab simulations 478
19.6 Signal total energy as a stochastic process of T 479
19.7 Instantaneous noise energy for asymptotic hyperbolic motion: preparatory calculations 482
19.8 KL expansion for the instantaneous energy of the noise emitted by a relativistic spaceship 488
19.9 Conclusion 489
19.10 References 489
20 KLT of radio signals from relativistic spaceships in arbitrary motion 491
20.1 Introduction 491
20.2 Arbitrary spaceship acceleration 493
20.3 Asymptotic arbitrary spaceship acceleration 500
20.4 Power-like asymptotic spaceship acceleration 506
20.5 Conclusion 515
20.6 References 516
21 Brownian motion and its time rescaling 517
21.1 Introduction 517
21.2 Brownian motion essentials 518
21.3 KLT of Brownian motion 520
21.4 White noise as the derivative of Brownian motion with respect to time 521
21.5 Introduction to time rescaling 523
21.6 The white noise integral and its autocorrelation 523
21.7 Time rescaling and Gaussian properties of $X(t)$ 525
21.8 Orthogonal increments for nonoverlapping time intervals 527
21.9 An application of the KLT: finding the total energy of $X(t)$ 527
21.10 References 534
22 Maccone first KLT theorem: KLT of all time-rescaled Brownian motions 535
22.1 Introduction 535
22.2 Self-adjoint form of a second-order differential equation 535
22.3 Exact solution of the integral equation for KLT eigenfunctions of all Brownian motions of which the time is not elapsing uniformly 538
22.4 A simpler formula for Bessel function order 544
22.5 Stability criterion for eigenfunctions. 545
22.6 References 547
23 KLT of the $B\left(\boldsymbol{t}^{2 H}\right)$ time-rescaled Brownian motion 549
23.1 Introduction 549
23.2 Time-rescaled Brownian motion $B\left(t^{2 H}\right)$ 549
23.3 KL expansion of $B_{P H}(t)$ 551
23.4 Total energy of $B_{P H}(t)$ 556
23.5 References 559
24 Maccone second KLT theorem: KLT of all time-rescaled square Brownian motions 561
24.1 Introduction 561
24.2 Autocorrelation of any zero-mean square process 561
24.3 KLT of any zero-mean time-rescaled square process 562
24.4 KLT of square Brownian motion 566
24.5 Checking the KLT of the square Brownian motion by Matlab simulations 571
24.6 References 571
25 KLT of the $\boldsymbol{B}^{\mathbf{2}}\left(\boldsymbol{t}^{2 \boldsymbol{H}}\right)$ time-rescaled square Brownian motion 573
25.1 Introduction 573
25.2 Preparatory calculations about $B^{2}\left(t^{2 \alpha+1}\right)$ 576
25.3 KL expansion of the square process $B^{2}\left(t^{2 H}\right)$ 581
25.4 Checking the KLT of $B^{2}\left(t^{2 H}\right)$ by Matlab simulations 583
25.5 References 584
26 Maccone third KLT theorem: Asymptotic KLT of GBM 585
26.1 Introduction 585
26.2 Time-rescaling function for the exponential autocorrelation $e^{t_{1} \wedge t_{2}}$ 585
26.3 Approximated (asymptotic for $t \rightarrow \infty$) KLT eigenvalues and eigenfunctions 587
26.4 KLT of geometric Brownian motion $N(t)$ 593
26.5 Reference 594
27 A Matlab code for KLT simulations 607
27.1 Introduction 607
27.2 The main file "Standard_Brownian_Motion_MAIN.m" 607
27.3 The file "input_data_toggle.m" 609
27.4 The file "Brownian_Autocorrelation.m" 611
27.5 The file "process_path.m" 612
27.6 The file "graphic.m" 612
27.7 The file "analytic_KLT.m" 614
27.8 The file "ANALYTIC_KLT_square_brow_motion.m" 615
27.9 The file "ANALYTIC_KLT_uniform_rel.m" 621
27.10 Conclusions 624
28 KLT applications and a Fortran code (Stephane Dumas). 625
28.1 The eigenproblem 626
28.2 Data compression 630
28.3 Classification of spectra 633
28.4 Signal processing 634
28.5 Eigenimages 638
28.6 References 640
28.7 Bibliography 641
28.A Fortran code for KLT simulations 641
PART IV THE UNITED NATIONS AND PROTECTION OF THE MOON'S FARSIDE 657
29 The United Nations and protection of the Moon's farside 659
29.1 Introduction: Defining the PAC (Protected Antipode Circle) 659
29.2 The urgent need for RFI-free radio astronomy 660
29.3 Terminal longitude λ on the Moon farside for radiowaves emitted by telecom satellites in orbit around the Earth 661
29.4 The Quiet Cone overhead the farside of the Moon 663
29.5 Selecting the Daedalus crater near the farside center 664
29.6 Our vision of the Moon's farside for RFI-free science 665
29.7 Two further Lagrangian points (L1 and L2) of the Sun-Earth system and how they "pollute" the farside of the Moon 668
29.8 Attenuation of man-made RFI on the Moon's farside 669
29.9 Legal issues: a possible strategy to have the PAC approved by the United Nations (COPUOS) 669
29.10 The existing Outer Space Treaty of 1967 and the (failed) Moon Treaty of 1979 671
29.11 The coming "New Moon Rush": trying to protect the farside from commercial, astronautical, and military exploitation 673
29.12 This author's speech at the United Nations COPUOS (June 10, 2010) 675
29.13 Conclusions 676
29.14 Acknowledgment 676
29.15 References 676
29.16 Bibliography 677
PART V EPILOGUE 683
30 Epilogue: Evolution, progress, and SETI 685
30.1 Introduction: jumping from physics to information theory 685
30.2 Exponential curve in time determined by two points only 687
30.3 The assumption that the exponential curve in time is the GBM mean value curve 687
30.4 The "no-evolution" stationary stochastic process 689
30.5 Differential entropy of the "running \boldsymbol{b}-lognormal" peaked at the GBM exponential average 689
30.6 Decreasing entropy for an exponentially increasing evolution: progress! 691
30.7 Conclusion 692
30.A Appendix 693
Index 701

Preface

SETI, the modern Search for Extra Terrestrial Intelligence, began in 1959 with the publication of the seminal paper entitled "Searching for Interstellar Communications" by Giuseppe Cocconi (1914-2008) and Philip Morrison (1915-2005) in Nature, Vol. 184, Number 4690, pp. 844-846, September 19, 1959. Just one year later, in 1960, Frank Drake started experimental radio SETI with Project Ozma, when he first looked for possible extraterrestrial (ET) signals near the 1.420 gigahertz marker frequency known as "the hydrogen line". Modern radio SETI was thus born, and so it continues today as a result of the enormous progress in electronic equipment and mathematical computing algorithms used to detect ET signals.

But, a further year later, at a meeting on SETI held at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia, Frank Drake gave another outstanding contribution, now called the Drake equation (http://en. wikipedia.org/wiki/Drake_equation). This is described in Chapter 1 of this book, together with its extension for the equation to encompass probability and statistics, as discovered by this author in 2007 and first presented in 2008. That analysis occupies the first 11 chapters of this book.

PART I-SETI STATISTICS. This first part of the book comprises 11 chapters.
Chapter 1-The statistical Drake equation. This chapter shows how the classical Drake equation, the product of seven positive numbers, may be replaced by the product of seven positive random variables, called the "statistical Drake equation". This way of doing things is scientifically more robust inasmuch as each input of the classical Drake equation now has an error bar around itself. In other words, the purely numeric inputs of the classical Drake equation now become the mean values of the corresponding random variables, around which a certain standard deviation (to be found experimentally) is subtracted or added, as is customary in serious scientific papers. The mathematical consequences of this transformation are demon-
strated and it is proven that the new random variable N for the number of communicating civilizations in the Galaxy must follow the lognormal probability distribution when the number of factors in the Drake equation is allowed to increase at will. This result opens up the possibility of inserting increasingly more factors into the Drake equation letting it become more representative of physical reality: for example, the end of civilization as a result of asteroid impact is absent in the 1961 formulation by Frank Drake probably because it was not until 1980 that the dinosaur demise was accepted by the scientific community as the consequence of an asteroid impact. Chapter 1 also derives another probability distribution (called "Maccone distribution" by Paul Davies and others) yielding the probability density function (pdf) of the distance between any two nearby civilizations in the Galaxy. This is of paramount importance for SETI inasmuch as it explains that we should hardly expect any ET civilization to be located at distances from us smaller than, say, 500 light-years. Thus, the most natural explanation for the apparent failure of 50 years of SETI search (1960-2010) is we did not find them simply because our current radio telescopes do not reach out far enough, being confined to ranges up to 100 or 200 light-years at best.

Chapter 2-Letting Maxima do the calculations. This chapter introduces students and young researchers to the joy of getting rid of hand-written calculations by resorting to the freely downloadable "Maxima" computer algebra code. In other words, the reader will find in the appendixes to the various chapters all those Maxima codes that this author had to write himself in order to prove the many equations given in the book for the first time. This way of doing things for heavily mathematical books like this one is brand new: we are not ashamed to demonstrate the beauty of SETI, astrophysics, and signal processing to our readers, we also teach them how to derive relevant new results by virtue of both Maxima and Mathcad. A couple of examples demonstrate this, in Appendixes 2.A and 2.B we derive the statistical properties of the lognormal distribution, key to the statistical Drake equation as shown in Chapter 1, and, as a demo of the strong capabilities of Maxima in tensor calculus, we derive the closed Einstein universe of 1917 (basic to cosmology), the Friedman equations of 1924, and the ensuing number of protons in the universe, the famous 10^{80} found by Dirac in 1937 (Dirac cosmology).

Chapter 3-How many planets for man and aliens? This chapter introduces the reader to the Dole equation (1964). This equation is mathematically the same as the Drake equation, but applies to the number of habitable planets in the Galaxy, rather than the number of communicating civilizations in the Galaxy. Thus, we extend our study to the statistical Dole equation, rather than the classical Dole equation of 1964, and we reach the conclusion that there should be some 100 million habitable planets for man in the Galaxy, plus a standard deviation of about 200 million. Not bad for future human expansion into the Galaxy, if we survive the many hazards we will have to face in the centuries to come, such as physical adversities and alien opposition. Having found the probability distribution of the distance between two nearby ET civilizations in Chapter 1, so in Chapter 3 we find that the same probability distribution applies to the distance between two nearby habitable
planets-after changing the numbers (but not the equations) as necessary, of course.

Chapter 4-Statistical Fermi paradox and Galactic travel. This chapter considers the possible expansion of a certain civilization throughout the Galaxy, whether it be human or ET. The key idea here is that the amount of time required for expansion into space is basically determined by two factors: (1) the speed of spaceships used for hopping from one habitable planet to the next, and (2) the time required to colonize a new planet from scratch and make it a new base for further space voyages. We assume that the first variable (spaceship speed) is essentially deterministic, and so does not require any statistical treatment. However, we also assume that the second variable (colonization time) follows the lognormal distribution, again as a result of the number of unknown factors being so large that it approaches infinity. The Central Limit Theorem of statistics-as used in Chapter 1 to find the lognormal distribution of N and in Chapter 3 for $N_{\text {Hab }}$, respectively-is used here. Having made this assumption, the coral model for the expansion of corals at sea and of a civilization in the Galaxy allows us to determine the probability distribution of the overall time necessary for a given civilization to expand throughout the whole Galaxy. The mathematics gets quite complicated, and only wise use of Maxima allowed us to find the relevant probability distributions. All this is of course a statistical enlargement of the famous Fermi paradox, so far only treated by other authors in naive purely deterministic settings.

Chapter 5-How long does a civilization live? This chapter tries to address the totally unknown value of the last term in the Drake equation: How long might a technological civilization possibly survive? Since nobody knows, for we ourselves are the only example we have, we confine discussion in this chapter to changes in the number N that would be caused by long-lived civilizations vs. short-lived ones. The numerical examples given in this chapter are a statistical extension of the corresponding deterministic values given by Carl Sagan in his book (and TV series) Cosmos (1980).

Chapter 6-Life-span modeling by finite b-lognormals. This chapter contains profoundly innovative material, regarded by the author as one of the best mathematical models he has devised so far in his 64 -year lifetime. The idea is as follows. All living beings are born at a certain time ($t=b=$ birth), they then grow up through adolescence ($t=a=$ adolescence), reach their prime at the peak ($t=p=$ peak), then decline through senility $(t=s=$ senility), and finally die ($t=d=$ death). Is there a probability finite density function that has such a behavior in time? Yes, is our answer and that is the b-lognormal. What is a b-lognormal? It simply is an ordinary (μ, σ) lognormal starting at a certain positive time $t=b>0$, rather than at $t=0$. Its equation just requires shifting the origin to a new positive instant $t=b>0$, which we call a " b-lognormal" since that probability density function does not seem to have a name yet. But, the other four points in time mentioned above do have an immediate mathematical meaning: (1) the adolescence time ($t=a$) is the abscissa on the ascending inflexion point, (2) the peak time $(t=p)$ is obviously the abscissa of the maximum, (3) the senility time $(t=s)$ is the abscissa of the descending inflexion point, and finally (4) the death time $(t=d)$ is the abscissa of
the intercept between the tangent to senility and the time axis, and this "mathematical trick" allows us to get rid of the infinite tail on the right, replacing it by an obvious finite point. Such are b-lognormals. Now, Chapter 6 is entirely devoted to discovering new mathematical equations expressing the two unknown parameters (μ, σ) as functions of some of the known inputs such as birth time $(t=b)$ plus two of the four remaining known inputs (a, p, s, d). The author was able to discover some finite equations of this type, and probably still unknown similar equations exist as well. But, what he was able to discover was enough to write Chapters 7 and 8 , of key importance to "mathematical history" and "mathematical Darwinian evolution", respectively. Finally, the author also derived an expression for the finite probability density of b-lognormals to renormalize to 1 vs. the ordinary normalization constant of ordinary lognormals. The set of all these new results is a breakthrough in replacing the mountain of words used today to describe Darwinian evolution and mathematical history by a simple set of statistical distributions in agreement with the statistical Drake equation and SETI.

Chapter 7-Historic civilizations as finite b-lognormals. We apply the results of Chapter 6 to mathematical history. We compute and compare the finite b-lognormals of eight civilizations whose existence had the greatest effect on the history of the world in the last 3,000 years: Ancient Greece ($600 \mathrm{BC}-30 \mathrm{BC}$), Ancient Rome (753 BC-476AD), Renaissance Italy (1250-1600), Portugal (14191974), Spain (1492-1898), France (1524-1962), Britain (1588-1974), and the U.S.A. (1898-2050 tentatively). It will be objected that all these civilizations belong to the so-called Western world: nevertheless, the West has been home to the most advanced civilizations in the last 3,000 years. Whether Asia will replace the West in leading humanity in the future is highly likely, but that is still in the balance right now in 2012. So, these eight b-lognormals were compared on the same plot and a sort of "upper envelope" clearly emerged: it is an exponential curve that, more or less, embraces all b-lognormals as the geometric locus of their peaks! The principal result here is that b-lognormals become increasingly narrow as time elapses (i.e., their peaks get higher and higher), and this reveals progress (i.e., an increasing degree of civilization). To make this result quantitative, rather than just qualitative, we need a new unit measuring the "amount of evolution" reached by a certain civilization at a certain time, just as meters measure lengths, seconds measure time, coulombs measure electric charge, and so on in physics. This new unit of evolution we call the "darwin" and introduce it in the next chapter which deals with Darwinian evolution. We do so because in science "to measure is to understand".

Chapter 8-A mathematical model for evolution and SETI. The "exponential envelope" that was looming in the background of the previous chapter fully comes to light as the link between Darwinian evolution and the family of b-lognormals which is constrained between the exponential and the time axis. In fact, we first define Darwinian evolution simply as the exponential increase in the number of living species on Earth that characterized the last 3.5 billion years of life on Earth. In other words, we assume that 3.5 billion years ago the first and only living organism appeared (RNA?) and draw an exponential curve linking that point
to the current (about) 500,000 living species. This exponential curve is then the geometric locus of all maxima of a one-parameter family of b-lognormals (the family free parameter is the birth time b of any new species) accounting for cladistics (i.e., the modern theory of evolution rigorously based on when a new species appears in the course of evolution, and not on any other naive and simplistic taxonomy claims). In still other words, each new species is an exponential curve, either slightly increasing or slightly decreasing in time, which departs from the "main exponential" (the overall envelope) when that new species originates. As a further new result, we also derive the "NoEv" or "No-Evolution" probability distribution for a given species, namely the pdf applying when a given species does not undergo any change for ages (i.e., when its members are born, grow up, mate, age, and die for millions or billions of years without their number being subject to any significant increase or decrease). Surprisingly, this brand-new probability distribution which stems from our theory is no longer a lognormal or a b-lognormal: it is something new, like a static law of evolution, and the fact that the relevant "NoEv" paper was published in a journal like OLEB (Origins of Life and Evolution of Biospheres) means we are not talking garbage.

Chapter 9—Societal statistics by the statistical Drake equation. This chapter is devoted to a new possibility thrown up by the statistical Drake equation: mathematically deriving new statistical results about previously unknown topics from statistical data we already know about. The unknown topic here is the "societal part" of the Drake equation (i.e., the product of its last three terms $f i \cdot f_{c} \cdot f L$). These three terms yield, respectively: (1) fi the probability that intelligent life (i.e., higher than monkeys) could arise on a planet already teeming with life as has been the case for the historic evolution of humankind since its appearance on Earth some 7 million years ago up until the discovery of radiowaves enabling communications between different ET civilizations in the Galaxy (the existence of radiowaves was first understood mathematically in 1864 by James Clerk Maxwell as sinusoidal solutions to his newly discovered Maxwell equations); (2) $f c$ means the communicative phase of a civilization using radio, lasers, or even neutrinos, which historically started in 1864 for humans and is ongoing right now; (3) $f L$ means the overall life-time of a civilization, from its inception until its death (e.g., as a result of asteroid impact, nearby supernova explosion, a rogue planet or star disrupting the gravitational stability of the stellar system of interest, or even because of nuclear wars among ETs), about which we know nothing at all. Having said this, Chapter 9 suggests we might know something (i.e., a statistical distribution) for the "societal part" $f i \cdot f c \cdot f L$ by rewriting it as the ratio $f i \cdot f c \cdot f L=N /(N s \cdot f p \cdot n e \cdot f l)=N / N_{\text {Hab }}$. Since the probability distributions of both N and $N_{\text {Hab }}$ are known (lognormals of the Drake and Dole equations, respectively), it all boils down to computing the new probability distribution of the ratio between two lognormals, which is not a lognormal but another more general distribution derived by us in Chapter 9.

Chapter 10-Cubics of historical recovery. Carl Sagan in his book (and TV series) Cosmos neatly points out the 1,000 years of lost progress by humanity in between the fall of the Western Roman Empire (476 AD) and the recovery of the

Italian Renaissance (about 1400 AD). Well, in Chapter 10 we cast this into a simple (perhaps simplistic) mathematical curve: a cubic (i.e., an algebraic equation of the third degree as a function of time). We show that the numeric values of this cubic match historic progress made in the following fields rather well: (1) astronomy from 1000 BC to 2000 AD , (2) SETI between 1450 and 2000, (3) search for exoplanets between 1950 and 2010, (4) unification of Europe between 1750 and 2010, (5) human life expectancy between 10000 BC and 2000 AD also extrapolated out to 3000 AD and 10000 AD . All these results are offered as simple mathematical models of what appears to be an "historical recovery law" of human civilizations, which might perhaps be extended to other ET civilizations as well, but only after SETI succeeds, of course.

Chapter 11-Exponential evolution in time as geometric Brownian motion. The statistical Drake equation described in Chapter 1 and the following chapters is static (i.e., it does not change in time). It was not until January 8, 2012 that this author came to realize that his static statistical Drake equation actually is a "snapshot" of a very important stochastic process called a "geometric Brownian motion" (GBM), which is more a "movie" than a "snapshot". But GBM is a very, very important stochastic process, probably the most important stochastic process of all: in fact, it was proven back in 1973 to be the key equation in the Black-Scholes model now used everyday in mathematical finance (http://en.wikipedia.org/wiki/Black\�\% $80 \% 93$ Scholes). Robert C. Merton was the first to publish a paper expanding the mathematical understanding of the options-pricing model and coined the term "Black-Scholes options-pricing model". Merton and Scholes received the 1997 Nobel Prize in Economics for their work and, though ineligible for the prize because of his death in 1995, Black was mentioned as a contributor by the Swedish academy. Having said this, we prove in Chapter 11 that GBM really is the same as the exponentially increasing number $N(t)$ of communicating civilizations in the Galaxy, subject, however, to uncertainty. In other words: as intelligence and technologies continue to evolve the overall number $N(t)$ of ET civilizations in the Galaxy increase exponentially, but this is subject to the risk of some civilizations suddenly disappearing because of asteroid impacts, nearby supernova explosions, rogue planets or stars disrupting the gravitational stability of the stellar system in question, or even because of nuclear wars among ETs. So, the mean value of $N(t)$ grows exponentially in time as $\langle N(t)\rangle=N_{0} e^{\mu t}$, but $N(t)$ itself is a random process with ups and downs, essentially given by $N(t)=N_{0} \cdot e^{\left(\mu-\frac{\sigma^{2}}{2}\right)} \cdot e^{\sigma B(t)}$, which is what GBN is, $B(t)$ being the standard $(0,1)$ Brownian motion. So far so good, but after having discovered this, we did more: we found the pdf of the distance stochastic process ("Maccone process'"?) given by $D(t)=\frac{C}{\sqrt[3]{N(t)}}=\frac{\sqrt[3]{6 R_{\text {Galaxy }}^{2} h_{\text {Galaxy }}}}{\sqrt[3]{N(t)}}$. This of course reduces to the "Maccone" distance distribution between any two nearby ET civilizations found in Chapter 1 for the static case, which is also the distance distribution between two nearby habitable planets (with different numbers) as proven in Chapter 3. Thus, in conclusion, we believe that Chapter 11 is the most
important chapter in this book as it paves the way to future statistical considerations about ETs and their distances in the Galaxy.

PART II—SPACE MISSIONS TO EXPLOIT GRAVITATIONAL LENSING.

 This second part of the book comprises five chapters.Chapter 12-So much gain at $\mathbf{5 5 0} \mathbf{A U}$. Gravitational lensing is the bending of light around massive celestial objects as predicted by Einstein's general theory of relativity. Although Einstein published his predictions in 1915 and in greater detail in 1936, it was not until 1978 that the first "twin-quasar image" (i.e., an image of the same quasar "doubled" by the gravitational lens of an intermediate galaxy) was indeed spotted by astronomers, proving the theory. But, what do we know about single spherical stars acting as lensing objects? Well, in Chapter 12 it is shown that around each star a "focal sphere" exists such that, if the observer is inside that sphere, no lensing effect occurs, but if the observer is outside that sphere, then an enormous magnification of all objects located on the opposite side of the star with respect to the observer's position occurs. In particular, this is true for the radio signals emitted by an ET civilization located so far away from the Sun that no antenna on Earth, however large, would be capable of detecting them. Thus, exploiting the Sun as a gravitational lens has become a must for all precursor interstellar missions reaching at least 550 AU from the Sun in any direction. The distance 550 AU (i.e., 3.17 light-days or 14 times the Sun-to-Pluto distance) is the radius of the focal sphere around the Sun predicted by general relativity. This author has given the name "FOCAL" to any future space mission getting to 550 AU and beyond to take advantage of the huge radio and visual magnifications provided by the gravitational lens of the Sun. These future space missions were described with plenty of technical details in the author's 2009 book entitled Deep Space Flight and Communications: Exploiting the Sun as a Gravitational Lens, published by SpringerPraxis. FOCAL is an acronym for "Fast Outgoing Cyclopean Astronomical Lens", which summarizes well what this new space mission is all about.

Chapter 13-FOCAL mission to $\mathbf{1 , 0 0 0} \mathbf{A U}$ as an interstellar precursor. Future FOCAL space missions might have three different targets: (1) getting a magnified image of the black hole (called Sgr A*) located at the center of the Galaxy and of its surroundings. (2) Getting unprecedented details of the nearest triple-star system (Alpha Centauri A, B, and C) in view of the first truly interstellar mission that would probably have that stellar system as its target, simply because it is the nearest to the solar system. (3) Getting unprecedented details about any extrasolar planet that might possibly be discovered in the future to host life, whether in lower forms only or in the higher form of an extraterrestrial civilization. These topics are technically discussed in Chapter 13, keeping in mind that the gravitational lens of the Sun (or of any star) favors space missions getting farther away from their minimal focal sphere inasmuch as the farther they go the more they get rid of the coronal effects of that star, such as the electrons creating divergent lensing effects. This is the reason the real optimal distance that any future FOCAL spacecraft from humanity
must reach is about $1,000 \mathrm{AU}$ (i.e., about one light-week), rather than just 550 AU or half a light-week.

Chapter 14-Belt of FOCAL spheres between 550 and $\mathbf{1 7 , 0 0 0} \mathrm{AU}$. So far we have discussed the gravitational lens created by the Sun, but what about the gravitational lenses created by the planets? Well, the radius of each focal sphere is proportional to the ratio between the square of the body's physical radius and the body mass. Thus, it is shown in Chapter 14 that an actual belt of eight nearly concentric focal spheres exists between 550 and $17,000 \mathrm{AU}$, created by the gravitational lensing effect of the Sun and the six more massive planets. In increasing distance from the Sun, there are the focal spheres of the Naked Sun (at 550 AU), Coronal Sun (at 1,000 AU), Jupiter, Neptune, Saturn, Earth, Uranus, and Venus. It follows that any precursor interstellar space mission will have to cross all these focal spheres, taking advantage of each of them in order to magnify the images of celestial objects lying on the other side of the lensing body. In addition, since all planets move around the Sun, planet lenses will be moving lenses with respect to the Sun, thus making sweeping arcs of circles on the celestial sphere as seen from the FOCAL spacecraft. In must be added, however, that the magnification provided by each such planetary lens will be smaller, or much smaller, than the magnification provided by the Sun. Thus, the notion of magnification must be carefully considered. On February 2, 2010, this author received an e-mail from Professor Frank Drake in which he suggested that the Kraus gain used up to then should be replaced by another mathematical formula, called the "Drake gain" by the author of this book, proving much higher numbers for the gain, just as power gain is much higher than voltage gain. This topic is also discussed in Chapter 14, although it seems to the author of this book a matter open for debate (at least as of 2012).

Chapter 15-Galactic Internet by star gravitational lensing. Up to now, we have only considered gravitational lensing made by a single body, whether the Sun or a planet. In Chapter 15 we study the brand-new idea of a "radio bridge" between any two stars, with each star contributing the gravitational lensing focusing power due to its own radius and mass. The combined effect of the two stars would enormously improve radio communications between the two stellar systems inasmuch as the overall gain provided by the two stars would be so large that communications across huge distances would become feasible with modest input powers too. In other words, (in popular terms) the answer to the question "Could we talk to Alpha Centauri A with a cellphone?" would be "Yes, if we exploit the gravitational lenses of both stars." Of course, two FOCAL space missions would now be required to build the radio bridge: one in the solar system reaching the minimal focal distance of 550 AU or beyond, and one in the Alpha Centauri A system reaching the minimal focal distance of 749 AU and beyond. Better still, suppose for a moment that humanity was already capable of sending a FOCAL probe to α Cen A. The answer to the question "What would we do then?" would be "Put it on the other side of α Cen A with respect to the Sun direction and keep the perfect (or nearly perfect) alignment between the four points in space: the FOCAL probe on the opposite side of α Cen A, the center of α Cen A, the center of the Sun, and another FOCAL probe at, say, 600 AU from the Sun in the direction opposite to
α Cen A." Then, a perfect radio bridge exploiting both stars as gravitational lenses would have been constructed, and communications would be feasible at minimal input energy costs, although the required time for all messages to reach the destination would still be 4.37 years, of course. In Chapter 15 we also consider several more radio bridges, like those of the Sun-Barnard Star, the Sun-Sirius, the Sun-Sun_at _Galactic_Center, and even the Sun-Sun_at_Andromeda. In all cases, the radio bridge insures moderate power expense to keep the radio link. This is a wonderful new step ahead, inconceivable before the Sun as a gravitational lens was deeply studied for the first time.

Chapter 16-Extragalactic Internet by black hole gravitational lensing. SETI between galaxies has long been regarded as impossible to achieve because power attenuation across huge intergalactic distances would be fatal to any signal, however energetic. In Chapter 16 we prove that this assumption is incorrect if radio bridges (in the sense described in Chapter 15) between the two black holes located at the center of the two galaxies are exploited. In other words, consider, for instance, the big black hole Sgr A* located at the center of the Milky Way Galactic Bulge, which has a mass of about 4 million Suns, and the similar but 10 times more massive (i.e., a mass of 40 million solar masses) P2 black hole located at the center of the Andromeda Galaxy (M31) at a distance of 2.5 million light-years from the Milky Way. Quite surprisingly, it turns out that the Sgr A*-Andromeda (M31) P2 black hole radio bridge performs better than the "small" Sun- α Cen A radio bridge! This is to say that our calculations show that, to maintain the link between the two black holes at the two galaxies' centers the same transmission power is required as to maintain the link between the Sun and α Cen A. In fact, it is actually much less than that since only about $1 / 10,000$ of the above-mentioned power would be required. This "miracle" is of course due to the huge masses of the two black holes, which more than compensates for the abysmal distance between the Milky Way and Andromeda. Similarly, it is proven in Chapter 16 that other radio bridges between supermassive black holes of other nearby galaxies work equally as well. The most unexpected case is provided by the radio bridge $\mathrm{Sgr} \mathrm{A}^{*}-\mathrm{M} 67$ big black hole, having an estimated mass of 6.6 billion solar masses compensating for the 57 million lightyear distance and yielding a performance about 10,000 times better than the "small" Sun- α Cen A radio bridge. All this sounds like science fiction, but it is science fact showing that the black hole at the center of each galaxy is indeed the most important part of the galaxy, where ET civilizations may even be fighting each other to keep control of this powerful supermassive black hole radio station. Human SETI scientists should carefully look at Sgr A* and its surroundings to see if "something strange", such as a "star war", is taking place there right now (i.e., about 25,000 years ago!).

PART III—KLT FOR OPTIMAL SIGNAL PROCESSING. The third part of this book comprises 12 chapters.

Chapter 17-A simple introduction to the KLT and BAM-KLT. The KLT (Karhunen-Loève Transform) is a mathematical algorithm to extract weak signals
from thick noise much more powerfully than the Fast Fourier Transform (FFT). In essence, the KLT is the well-known Principal Components Analysis (PCA) applied to both filtering (as just said) and data compression, and it is widely used by scientists and engineers of all kinds, unfortunately under many different names and often without a clear understanding of the mathematics involved inasmuch as the mathematics is often regarded as too difficult to understand by engineers. In Chapter 17, the first of 12 chapters devoted to studying the KLT in different situations, we first provide an easy-to-understand description of the classical KLT (i.e., the KLT as usually taught in university graduate courses-Sections 17.1 through 17.6). The classical KLT may be summarized (in technical language) as a principal axes transformation in the Hilbert space spanned by eigenvectors of the autocorrelation of noise plus a possible embedded signal. Radio SETI, when regarded as the extraction of weak signals from thick noise, is of course the ideal application field of the KLT. Later in the chapter (Sections 17.7 through 17.14) the reader is introduced to the BAM-KLT (an acronym for Bordered Autocorrelation Matrix KLT), investigated and published by this author since 2008 as an advanced section of KLT theory. The basic BAM-KLT goal is to get around the main KLT difficulty of the $O\left(N^{2}\right)$ calculations required to compute the eigenvalues and eigenvectors of an $N \times N$ autocorrelation matrix, which is a much higher computational burden than the $O(N \ln (N))$ calculations required by the FFT. The BAMKLT, however, is still a fresh new topic, needing more profound investigations. Finally, we would like to point out the recent and important new development that began with the publication of the paper by Arkadiusz Szumski, "Finding the interference: The Karhunen-Loève Transform as an instrument to detect weak RF signals," InsideGNSS (Working Papers section), May-June 2011 issue, pp. 56-63. In practice, the young Polish telecommunications engineer Szumski was tasked by the European Space Agency (ESA) with checking the validity of this author's new results about the KLT and the BAM-KLT by writing a numerical code enabling KLT to extract very weak and complicated (chirped, non-stationary, transient, etc.) signals from random noise across both narrow and wide bands and with signal-to-noise ratios (SNRs) like 10^{-3} or smaller (the FFT already fails with $\mathrm{SNR}=1$). The results of Szumski's simulations have convinced many that the KLT and BAM-KLT are well suited to be applied in GNSS (global navigation satellite systems), where huge investments are being made to improve old-fashioned FFT-based technologies, totally inadequate when compared with the KLT. The future will tell, and this book, originally intended for SETI scientists only, might become palatable to GNSS engineers as well.

Chapter 18-KLT of radio signals from relativistic spaceships in uniform and decelerated motion. By "relativistic spaceship (or probe)" in the following we mean a spacecraft that can reach speeds that are a significant fraction of the speed of light. For such spacecraft, Newtonian physics (nowadays successfully applied to nearly all spacecraft) would no longer hold good, and Einstein's special theory of relativity must be applied instead. No relativistic spaceship yet exists, and so the wealth of results, presented in this and the following chapters about optimal telecommunications between the Earth and a relativistic probe moving either away from Earth or
approaching it, might superficially be dismissed. However, we are convinced that, sooner or later, relativistic spacecraft will indeed be built, and so Chapters 18 through 28 are hardly a waste of time for the reader to digest, even if mathematically difficult to understand at first sight. So, let us start by pointing out that the most striking feature of the theory of relativity is of course the existence of two times: (1) "coordinate time" (i.e. the time of guys remaining on Earth, say) and (2) "proper time" (i.e., the time of astronauts living inside the relativistic spacecraft). The key point is that proper time elapses more slowly than coordinate time (i.e., the twin paradox): if one of two twins stays on Earth and the other one flies around in space at relativistic speeds, when he comes back to Earth his brother would probably have long since died, inasmuch as his brother's time had elapsed much faster than the relativistic astronaut's time. With this in mind, the author (in his youth) developed a full mathematical theory of the KLT for time-rescaled Brownian motions for Gaussian stochastic processes (i.e., for the radio noise hampering telecommunications in space between a relativistic spaceship and the Earth). This mathematical theory is described in Chapters 21 ("Brownian motion and its time rescaling") and 22 ("Maccone First KLT Theorem: KLT of all time-rescaled Brownian motions"), as we shall see later. Essentially, the author proved that the KLT eigenfunctions of all time-rescaled Gaussian processes are Bessel functions of the first kind, while the corresponding eigenvalues are the zeros of such Bessel functions and their first derivative. In Chapter 18 these results are applied to two cases of relativistic motions: (1) uniform motion, for which time rescaling is rather obvious since Brownian motion KLT eigenfunctions are just sines, and (2) decelerated motion (i.e., the motion of a spaceship slowing down from high relativistic speed to practically zero speed-as done by alien spaceships in the movie Independence Day). Computation of the stochastic integral yielding the total energy of signals received on Earth completes the chapter.

Chapter 19-KLT of radio signals from relativistic spaceships in hyperbolic motion. When we think about interstellar flights to the nearest stars, special relativity shows that the best velocity profile to reach the target with minimal proper time is the so-called "hyperbolic motion": namely, (proper) uniformly accelerated motion from the start to midway and then, after turning the ship by 180 degrees, (proper) uniformly decelerated motion from midway to the target, finally getting there at zero speed. The optimal (proper) uniform acceleration would be $1 g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, so as to let the people and equipment on board feel the same weight they have on Earth. At such $1 g$ (proper) uniform acceleration, the center of the Galaxy would be reached in just 21 years of proper time despite it being 25,000 light-years away from us, but of course the energy requirements for the spacecraft to maintain $1 g$ (proper) acceleration for 21 years would be huge, which is why the project is unfeasible by today's standards. Less demanding energy requirements would apply of course if the target is the nearest stellar system, Alpha Centauri, just 4.37 light-years away, but, whatever the target may be, telecommunications of some kind will have to be kept between the (proper) uniformly accelerated spacecraft and the Earth. This chapter proves that the KLT eigenfunctions for this hyperbolic motion are Bessel functions of the first kind and order zero. To be precise, this KLT is an asymptotically exact KLT for $t \rightarrow \infty$,
but in reality the numbers are already acceptable about one year after departure from Earth, thus yielding an applicable result.

Chapter 20-KLT of radio signals from relativistic spaceships in arbitrary motion. The same mathematical techniques already applied in Chapter 19 to hyperbolic motion (i.e., to proper uniformly accelerated motion) are shown in this chapter to be appropriate to derive the KLT for signals emitted by a spacecraft in arbitrary radial motion away from the Earth or towards it (such as an alien spacecraft heading for the Earth would do, as in the Independence Day movie of 1996). The calculations are unfortunately long and, at first sight, may appear daunting. But the starting idea is easy: just as was the case for hyperbolic motion, it is possible to exactly integrate the relativistic arbitrary motion radial differential equation. This opens up the possibility of computing the relevant KLT by resorting to the theory of time-rescaled Brownian motions already used in Chapter 18 and described in detail in Chapters 21, 22, and 23. Thus, equations are provided not only for the KLT of the signals received on Earth from a receding or approaching spaceship at an arbitrary speed and acceleration profile, but also for the total amount of energy of the signals emitted by such a spaceship (i.e., for the stochastic integral of the square of the intensity of such radio signals). The time will come when these equations will become important to human expansion (or to human understanding of an alien) into the Galaxy, just as in Star Trek.

Chapter 21-Brownian motion and its time rescaling. This is the first of three chapters devoted to detailed mathematical description of the KLT for all timerescaled Gaussian processes (as mathematicians call them) or time-rescaled Brownian motions (as physicists prefer to call them). This formed a large part of the author's work following his Ph.D. obtained at the Department of Mathematics of the University of London (U.K.) King's College in 1980. The key idea is that if one lets the time variable of ordinary Brownian motion elapse other than in a uniform way (i.e., if one allows time to be stretched, time dilation of special relativity, in an arbitrary fashion), the process still remains Gaussian, and its autocorrelation can be easily expressed in terms of the arbitrary time-rescaling function $f(t)$. Actually, it can easily be proven that the square of the time-rescaling function,
$f^{2}(t)$, equals the well-known radical $\sqrt{1-\frac{v^{2}(t)}{c^{2}}}$ of special relativity, and this establishes a firm connection between time-rescaled Brownian motions and special relativity. It is as easy as that.

Chapter 22-Maccone First KLT Theorem: KLT of all time-rescaled Brownian motions. This is the second of three chapters devoted to the detailed mathematical description of the KLT for all time-rescaled Gaussian processes. Since the KLT of ordinary Brownian motion can be proven to be given exactly by sinusoidal functions (i.e., it is basically the same as a Fourier transform), then one may wonder what the KLT of time-rescaled Brownian motions might possibly be. The answer is provided by the "Maccone First KLT Theorem" and is that eigenfuctions are Bessel functions of the first kind suitably time-rescaled, while eigenvalues are the zeros of certain linear combinations of such Bessel functions and their derivatives. It is also possible
to find an asymptotic version of this KLT for $t \rightarrow \infty$ where things are easier and ready for engineering applications. The mathematical proof of this "Maccone First KLT Theorem" is unfortunately lengthy and hinges on the Sturm-Liouville theory of boundary problems for ordinary differential equations of the second order with non-constant coefficients. The author discovered all this back in the early 1980s, and published these results in the Italian mathematical journal Bollettino dell'Unione Matematica Italiana ("Eigenfunctions and energy for time-rescaled Gaussian processes", Bollettino UMI, Series 6, Vol. 3A (1984), pp. 212-219). He was then seeking a university position somewhere, but that paper was regarded as "just a physical application" by pure mathematicians and "useless for particle physics" by physicists of the time. So, the author failed to get a position, and in 1985 he joined the space company Alenia Spazio S.p.A., where the engineers were even less interested in his work than the pure mathematicians and particle physicists. The truth is that nobody cared about the telecommunication theory for relativistic interstellar flights, with the exception of a few bright minds such as Dr. Leslie Shepherd and Dr. Giovanni Vulpetti of the Interstellar Space Exploration Committee (ISEC) of the International Academy of Astronautics (IAA), which this author eventually joined.

Chapter 23-KLT of the $\boldsymbol{B}\left(\boldsymbol{t}^{2 \boldsymbol{H}}\right)$ time-rescaled Brownian motion. This is the third of three chapters devoted to detailed mathematical description of the KLT for all time-rescaled Gaussian processes. It deals with the KLT of a Brownian motion whose time variable does not elapse uniformly, but rather increases like power $t^{2 H}$ (time dilation). The H parameter is the Hurst exponent of Mandelbrot since the $B\left(t^{2 H}\right)$ is indeed an H self-similar stochastic process. This author discovered that this process has an exact KLT by solving the relevant integral equation back in 1979, when he was preparing his Ph.D. thesis in Mathematics at the University of London (U.K.) King's College, awarded to him on September 19, 1980. Afterwards, the author returned home to Turin, and finally published his exact KLT of $B\left(t^{2 H}\right)$ in both the Bollettino dell'Unione Matematica Italiana, Series 6, Vol. 4-C (1985), pp. 363-378, and Il Nuovo Cimento (the Italian physics journal), Series B, Vol. 100 (1987), pp. 329-342. He also found time to study the stochastic integral yielding the total energy of this stochastic process and generalize the Cameron-Martin formula that holds for standard Brownian motion to this process.

Chapter 24-Maccone Second KLT Theorem: KLT of all time-rescaled square
Brownian motions. The content of this chapter was long regarded by this author as his best mathematical result ever about the KLT: it was published as "The Karhunen-Loève expansion of the zero-mean square process of a time-rescaled Gaussian process," Bollettino dell'Unione Matematica Italiana, Series 7, Vol. 2-A (1988), pp. 221-229. The author still remembers the reviewer's words con una serie di passaggi ben condotti ("by virtue of a series of well-conducted steps") it was indeed possible for him to exactly solve the KLT integral equation for the square of any time-rescaled Gaussian process (as described in detail in Chapter 24). The calculations are complicated, and the very few who read that 1988 paper probabaly uttered the usual question "What's the purpose of all this?" This author's paper was regarded as of little use for pure mathematicians or particle physicists, and no use
for telecommunication engineers. But, all this simply stems from the fact that no relativistic interstellar flights have been studied, neither back in 1988 nor today. Looked at more generally and more positively, this and related KLT papers could become useful in the study of transient astrophysical phenomena, like supernova explosions, gamma ray bursts, and SETI signals that are just transient because of short-lasting gravitational lensing alignments among stars and/or other bodies. However, Chapter 24 contains a result that might already be of some use today: the exact KLT of the square of standard Brownian motion, which is even simulated numerically in the chapter just to check that everything is right.

Chapter 25-KLT of the $\boldsymbol{B}^{\mathbf{2}}\left(\boldsymbol{t}^{\mathbf{2 H}}\right)$ time-rescaled square Brownian motion. This chapter is with respect to Chapter 24 the same as Chapter 23 is with respect to Chapter 22. In other words, in Chapter 25 we prove that the KLT of the timerescaled stochastic process $B^{2}\left(t^{2 H}\right)$ is the exact solution of the corresponding KLT integral equation, given by certain Bessel functions of the first kind and, similarly, the eigenvalues are the zeros of similar Bessel functions. The asymptotic version of these results for $t \rightarrow \infty$ is also obtained and is particularly simple inasmuch as the Bessel functions then downgrade to ordinary cosines whose time variable is timerescaled like a power of t. In this chapter we were likewise able to check by numeric simulations that the results are indeed correct.

Chapter 26-Maccone Third KLT Theorem: Asymptotic KLT of GBM. The geometric Brownian motion (GBM) is today the most important stochastic process of all, since it is widely used in the mathematics of finance and, in particular, in the Black-Scholes models. It was not until January 8, 2012 that it dawned on this author that his statistical Drake equation (described in Chapter 1) is just the particular case $t=1$ and $N_{0}=e^{\frac{\sigma^{2}}{2}}$ of a GBM. In other words, all the equations derived in Chapter 1 are static particular cases of much more general corresponding equations of a GBM in which time t is not constrained to any particular numeric value. This was proven in Chapter 11, and the conclusion was that the $N(t)$ stochastic process $(t \geq 0)$, yielding the number of communicating ET civilizations in the Galaxy at any positive time t, is exactly a GBM. We know that every stochastic process-and thus $N(t)$-has a KLT. So, the next natural question arises: What is the KLT of a GBM? The author is unable to answer this question at the moment. However, back in September 2007, he was able to derive the asymptotic KLT (i.e., valid for $t \rightarrow \infty$) of the exponential Brownian motion $e^{B(t)}$ which now appears to be the key stochastic (i.e., non-simply deterministic) part of the GBM definition. This asymptotic KLT of a GBM is published here for the first time. The starting point is the surprising result that the time-dependent order $\nu(t)$ of Bessel functions of the first kind described in Chapter 22 is practically equal to 1 for just moderate values of t a few instants after the initial time $t=0$, and stays as such for ever (i.e., for all higher values of time). Thus, in practice it is possible to simply set $\nu(t)=1$ as the order of Bessel functions order, and then keep going! The asymptotic KLT of the GBM for $t \rightarrow \infty$ is announced-a brand-new result that might have profound impacts on further developments. But, at the moment the author confines himself to giving the new equations.

Chapter 27-A Matlab code for KLT simulations. Mathematical books today should also provide numeric codes to simulate the new equations provided in analytical form. This is the goal of Chapter 27. In 2008, the author and his pupil Dr. Nicolò Antonietti set out to write a Matlab (or Octave) code capable of simulating at least the most important KLT expansions given in this book. The input was usually standard Brownian motion or, alternatively, a user-provided input stochastic process numerically assigned. The output was the KLT displayed in three forms: (1) the full KLT reconstruction based on all instants between 0 and T; (2) the KLT reconstructed by using only the first few eigenvalues and eigenvectors of the autocorrelation matrix, thus yielding-instead of a perfect reconstruction-a smooth curve interpolating the data of the input stochastic process (this we call "an empirical reconstruction" of the input stochastic process where the degree of approximation can be selected at will, of course-in other words, the KLT is also a data compression algorithm); (3) when available, we also provide the exact KLT or, if that is unavailable, we provide the asymptotic KLT for $t \rightarrow \infty$ based on the asymptotic expansion of Bessel functions of the first kind for $t \rightarrow \infty$.

Chapter 28-KLT applications (by Stephane Dumas). The author's new French Canadian pupil, Monsieur Stephane Dumas of Québec, kindly provided for free the whole content of Chapter 28. After an introduction to the many applications of the KLT under different names (PCA = Principal Component Analysis, SVD = Singular Value Decomposition, and so on), Dumas provides the Fortran code that he wrote in order to use the KLT in a number of applications. He also sought to optimize the computing time, which is of course the main obstacle still hampering real-time applications of the KLT instead of the much more customary (and much less profound) FFT. This chapter is of course intended for the applied sciences of all kinds, and not just SETI.

PART IV: THE UNITED NATIONS AND PROTECTION OF THE MOON'S

FARSIDE. The fourth part of this book comprises a single chapter.
Chapter 29-The United Nations and protection of the Moon's farside. One of this author's teachers who made a profound impression upon him was the Frenchman, Jean Heidmann (1920-2000) (http://www.universalis.fr/encyclopedie/jean-heidmann/). In the 1990s, Heidmann was tasked by the International Academy of Astronautics (IAA) with studying how best the Moon farside could be protected by law against future human polluters of any kind (real estate, industry, military) that could damage the unique environment existing on the Moon's farside, which is free of man-made radio noise. This is more a political problem than an astronautical and scientific problem and needs to be resolved urgently by some international agreement among the main spacefaring nations before it is too late. Just before Heidmann passed away in 2000, he appointed this author as his deputy to lead the relevant IAA team, and so this author took over that difficult task. Although he published several papers on the subject (see, e.g., "Protected Antipode Circle on the farside of
the Moon," Acta Astronautica, Vol. 63 (2008), pp. 110-118), this was just the beginning of his activity in this field. On June 10, 2010, this author delivered a speech at the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) in Vienna, Austria, to raise the issue at the United Nations level for the first time. Chapter 29 describes in detail the issues at stake, and how the United Nations could resolve this space problem for the future benefit of all humankind.

PART V: EPILOGUE. The fifth part of this book comprises a single chapter.
Chapter 30-Epilogue: Evolution, progress, and SETI. This book ends with an epilogue about SETI. What if SETI succeeds? It's hard to predict the consequences of the first contact between humankind and ETs. If we look back at past human history, we know that the most important sudden contact between two historic civilizations that had independently developed different levels of technology was the discovery of America by Europeans, which resulted in the violent subjugation of the lower-level civilization by the higher-level one. Yet, those were times when war was common practice to all civilizations on Earth, and so the resulting violence was perhaps inevitable. Perhaps more advanced civilizations than ours might come to put an end to wars and contact would thus be smoother. In any case, as of 2012 we know that an immense number of extrasolar planets do indeed exist in the Galaxy, and so thinking that we are alone is no longer realistic. The best we can do is to keep exploring, as astrobiology does nowadays, and keep "Searching for Life Signatures", as the conferences run by this author since 2008 under the aegis of the IAA are called. Only the future will tell.

Conclusion

This is a textbook for high-level students and research scientists-it is not popular stuff at all. The author feels that a book like this is really needed by the worldwide scientific community since it tries to bridge the gaps among branches of science that are still regarded as independent of each other-just to mention a few: astronomy, evolution of life on Earth and elsewhere, mathematical history (a brand-new discipline?), and of course astronautics (especially, future relativistic interstellar flights). To combine all this in some "unified mathematical description" is something that needed to be done. This book is a step in the right direction toward this new vision of humanity in the Galaxy that future decades and centuries will increasingly develop.

We would like to conclude this preface with the same sentence used by Johannes Kepler (1571-1630) when he disclosed to the world the discovery of his Third Law (1619), which he could only achieve by coupling astronomical observations to the intense use of mathematics. To correctly understand Kepler's sentence, however, one has to remember that, in Kepler's time, Bible reckoning had made scholars believe that the Universe had been created just about 6,000 years earlier. Keeping that in
mind, we now report Kepler's sentence:
"The die is cast; the book is written, to be read either now or by posterity, I care not which. It may well wait a century for a reader, as God has waited six thousand years for an observer"
from Harmonice mundi (1619), translated in Bill Swainson and Anne H. Soukhanov, Encarta Book of Quotations (2000), p. 514.

Claudio Maccone
Torino (Turin), Italy, February 29, 2012

Acknowledgments and dedication

This author is indebted to many individuals for inspiration and help over the 30-year period (1982-2012) of his involvement in the SETI field. To list them all, however, would simply be impossible. Thus, only two colleagues will be publicly acknowledged here because of their influence on the author's thoughts as well as on his career over the last three decades:
(1) Professor Frank Donald Drake, an American researcher, the first experimental SETI scientist ever and discoverer of the Drake equation studied in this bookquite simply this author's most inspiring and respected teacher.
(2) Dr. Jean-Michel Contant, a French researcher, Secretary General of the International Academy of Astronautics (IAA) and constant supporter of SETI activities within the IAA. Indeed, the IAA is responsible for:
(a) creation of the IAA's SETI Permanent Committee and its two sessions (SETI I: science and technology and SETI II: societal aspects) held yearly at the International Astronautical Congress (IAC);
(b) publication of the many important SETI papers in the IAA journal Acta Astronautica over the years;
(c) the Moon Farside Protection action undertaken by this author at the United Nations (as described in Chapter 29).

To these two individuals in particular, as well as to all other SETI scientists from all over the world, this book is dedicated.

Claudio Maccone
Technical Director for Scientific Space Exploration International Academy of Astronautics (IAA) and Associate, Istituto Nazionale di Astrofisica (INAF) Torino (Turin), Italy, March 19, 2012

(Left to right) Jean-Michel Contant, Frank Drake, and Claudio Maccone at the Royal Society in London, January 26, 2010.

Foreword

One of the most important discoveries in the history of astronomy-indeed, in all of science-was made in recent years: this was the detection of thousands of other planetary systems beyond our own. This is the result of the endeavors made by a small group of astronomers diligently observing, night after night, small deviations in the positions of lines in stellar spectra and observing faint occultations of stars by planets as revealed by the Kepler spacecraft. All of this has happened while observing less than 1% of the visible stars in the night sky. The detection technique used by Kepler can only detect about 1% of the planetary systems actually orbiting the stars observed. So these amazing results tell us that there must be millions of planetary systems orbiting the stars we can observe, and simple models put the number of planetary systems in our entire Milky Way Galaxy in the billions. What an exciting result this is, and the age-old question of whether there are other worlds like ours has been answered with a resounding "Yes!"

Equally exciting is the discovery that a large proportion of these systems have planets that may be inhabited by living creatures, just as here on planet Earth. These planets must be the right size and right distance from their star for life as we know it to exist. There are very many of these planets. If there is life and if it has evolved in much the same way as life has on Earth-which seems inevitable-then there must be a large number of planets supporting intelligent life probably with technologies like ours. Such technologies as radio transmitters and powerful lasers may be detectable by instruments that already exist on Earth or that soon may be developed.

All of this strengthens our resolve to extend the scope and speed with which the search for extraterrestrial intelligence, SETI, is undertaken, which has for the last 50 years or so been done with very limited resources. The knowledge that there really is life akin to ours deep in space justifies assigning far greater resources to the search than in the past-resources like telescope capability, telescope observing time, the time of dedicated scientists. To facilitate eventual discovery and to use such resources responsibly calls for the most careful planning.

Thus, it is imperative to analyze our search methods and procedures carefully so that we can create the best possible SETI program from the resources available. A giant step toward quantifying the power of our searches and, in so doing, optimizing our search programs has been made by Claudio Maccone in this book.

The author has created a powerful mathematical framework for quantifying the capability of SETI programs to succeed. This is based on the 50 -year-old Drake equation, which can be used to predict the probability that a civilization might be encountered in a given search. In this book the author has applied statistical methods rigorously to application of this equation. He shows how his methods may be applied beneficially to other problems and, in so doing, enhance our understanding of the mathematical approaches he has developed.

Lastly, he points the way to a very powerful method to detect other civilizations from their faint signals, feeble radio transmissions, and dim lights of their cities at night. This is to use our Sun as a gravitational lens to create a giant telescope that concentrates all forms of electromagnetic radiation at a series of foci positioned many hundreds of astronomical units from the Sun. This, in effect, creates a lens that is larger than the diameter of the Sun, more than a million kilometers across, to create brilliant images with image detail of incredible resolution.

Although such a telescope is beyond our technical capabilities at present, it may be probable in the not-too-distant future, perhaps in a hundred years or so. It is important to consider it in detail, as the author does, because many, maybe most, older civilizations than ours will have long since implemented the lens provided by their star. If they use such lenses not only to search for life, but also to amplify signals very powerfully and focus them on distant civilizations, how might these signals appear? This is important because it could well be that such amplified signals will be what we can most easily detect. We need to know what forms they might take so that we are instrumentally and mentally prepared should such a signal be captured. The detection of such a signal would be one of the most monumental discoveries ever and, simultaneously, would demonstrate that many more discoveries are awaiting our attention. The window would be opened to an incredible wealth of beneficial information which would enrich us all.

Foreword by Giovanni Bignami

Dr. Claudio Maccone submitted a Proposal to the European Space Agency (ESA) about the FOCAL (Fast Outgoing Cyclopean Astronomical Lens) space mission to 550 AU and beyond in the year 2000, when I was Scientific Director of the Italian Space Agency (ASI). I immediately endorsed Maccone's Proposal acknowledging that ASI would support it if ESA approved it. Unfortunately, ESA failed to select Maccone's Proposal for further study and so his ideas had to be temporarily abandoned, but that did not mean they were bad ideas. In 2009, Dr. Maccone published a whole technical book on the subject, entitled Deep Space Flight and Communications, and more interest arose again in 2011 on the occasion of the DARPA-NASA 100 Year Starship Study. Quite simply, any future precursor interstellar mission will have to cross the minimal focal sphere at 550 AU beyond which it is possible to exploit the huge signal magnifications provided by the Sun as a gravitational lens. Thus, Maccone's FOCAL mission is destined to pop up again and again in the future, until favorable political conditions enable some important space agency to make it a reality. In this new book about mathematical SETI, five chapters (Chapter 12 through 16) are devoted to the physics and mathematics of the Sun as a gravitational lens with important updates with respect to the 2009 book by the author. For instance, it is proven that, even for the nearest interstellar mission to Alpha Centauri (4.37 light-years away), the ordinary radio telescopes we have on Earth would be inadequate to maintain the radio link between the Earth and the receding spacecraft unless the huge radio amplification provided by the Sun as a gravitational lens is invoked. In other words, Maccone points out that, before launching a truly interstellar spacecraft to even the nearest star, it would be necessary to send a large space antenna in the opposite direction of the target with respect to the Sun just in order to keep the radio link at moderate powers until the interstellar spacecraft reached Alpha Centauri. But, Maccone goes beyond that. Suppose for a moment that our spacecraft had already reached Alpha Centauri: What would we then do with it? Maccone's suggestion is to put the interstellar probe on the other side of, say,
α Cen A (the most massive of the three stars) and in a direction exactly opposite to the Sun. Then, these two stars and the two FOCAL probes on their outer sides, respectively, would form a huge "radio bridge" capable of reducing the link powers dramatically. In popular terms, Maccone answers the question "Would we be able to maintain the link to α Cen using a cellphone?" by saying "Yes, if we exploited the gravitational lenses of both stars by putting two FOCAL probes on their opposite sides." This notion of a "radio bridge made possible by star gravitational lensing" is then extended to other increasingly distant stars, showing that the links are still feasible even up to thousands of light years and more. Thus, even a sort of "Galactic Internet" could indeed be created, or perhaps it has already been created by more advanced civilizations in the Galaxy, but humans will be unable to join it until their spacecraft reach the minimal focal distance from our own star, the Sun, at 550 AU. Finally, Maccone extends these notions even to extragalactic distances, showing that the notion of a "radio bridge" still holds if one replaces the masses of the stars by the masses of the supermassive black holes located at the center of each galaxy. Thus, for the Milky Way, SgrA* (i.e., the 4,000,000 M_{\odot} central black hole) would be the "magnifying gravitational lens" capable of keeping the Milky Way in touch with other galaxies. Just science fiction? No, just classical physics, but revealed by the new open-minded SETI vision of the universe that many still lack.

Chapters 17 through 28 of this book deal with a completely different mathematical topic: how to improve the ordinary noise-filtering techniques based on the FFT (Fast Fourier Transform) by the much more sophisticated KLT (Karhunen-Loève Transform). The basic idea seems to be that, while the FFT only uses sines and cosines as the set of orthonormal functions in the Hilbert space upon which the series expansion is made, the KLT uses the best set of orthonormal functions changing them according to the input, rather than keeping them fixed to sines and cosines. This optimizes the transform by adapting it to the input, whatever that might be. Unfortunately, KLT mathematics is much less simple than FFT mathematics, and that makes the topic difficult to follow for engineers not particularly familiar with eigenvalues, eigenvectors, and all that. To physicists, on the contrary, the KLT is immediately clear since it is just the ordinary Hilbert space apparatus of quantum physics translated into the language of signal processing. Maccone then finds explicit equations for KLT eigenvalues and eigenfuctions in a number of practical cases of interest to both SETI and astrophysics in general. For instance, the rotational period of the Vela pulsar was impossible to find by the ordinary FFT, but was indeed found by a team from the Asiago Observatory at the European Southern Observatory at La Silla (Chile) using the KLT. More generally, the theory of transient phenomena might greatly benefit by the adoption of the KLT instead of the FFT. It must be said, however, that the computational burden is much higher for the KLT than for the FFT: such as $O\left(N^{2}\right)$ for the KLT as compared with the much easier $(O(N \ln (N))$ for the FFT, which is why many researchers still prefer the FFT just to save computational time and money. Yet, the FFT utterly fails for signal-to-noise ratios (SNRs) lower than one, while the KLT succeeds in retrieving very weak signals in SNRs of even (say) 10^{-3} or smaller.

Thus, for the purpose of research, the KLT is vastly superior to the FFT. Moreover, it also applies to wide bands rather than just to narrow bands to which the FFT is confined. Actual numerical codes to compute the KLT are also provided in this book, making it an ideal tool for research.

But the most profound novelty put forward in this book is the statistical Drake equation and its far-reaching consequences, which are described in the first 11 chapters of the book. The basic idea here is to replace all numerical input variables in the classical Drake equation of 1961 by positive random variables whose probability distribution may be unknown at the outset. Maccone shows that, if the number of such input random variables is made to increase at will (meaning that increasingly more physical factors are taken into account), then the probability distribution of N, the number of communicating civilizations in the Galaxy, approaches the lognormal distribution. This is really a simple consequence of the central limit theorem of statistics, but was not realized as such until 2008, when Maccone first presented it at the SETI I Session of the International Astronautical Congress held in Glasgow, Scotland. After that, Maccone reformulated the Dole equation too, yielding the number of habitable planets in the Galaxy in just the same way as the Drake equation yields the number of ET civilizations. The most important new result of all, however, is the discovery of the probability distribution yielding the distance between any two nearby ET civilizations in the Galaxy. This is no longer a lognormal distribution, but rather a new equation dubbed "Maccone distribution" by Paul Davies (who first understood and popularized it after its discovery by Maccone). This really is at the heart of SETI inasmuch as it predicts that the probability of finding ETs at distances less than about 500 light-years is virtually zero. Since our radio telescopes on Earth cannot detect ET signals arriving from distances greater than 100 or 200 light-years, it is immediately apparent that SETI searches have so far failed to find ETs simply because they do not reach far enough out into the Galaxy! Indeed, this is even more obvious if one considers that the size of the Galaxy is about 100,000 light-years and we are struggling to explore a sphere of 500 to 1,000 light-years around the Sun. Put flippantly, it is as if Christopher Columbus had stopped at the Canary Islands and then "concluded" that America could not possibly exist!

Finally, one last chapter describes Maccone's activity on the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) in order to protect the farside of the Moon from wild future exploitation by anyone disrespectful of its unique radio-quiet environment. This is of course more politics than science. But, it is high time something was done before private entrepreneurs achieve the capability of flying to the Moon at their own private expense, thus making them believe that they can dispose at will of the Moon just because they have money.

In conclusion, this is a highly innovative research book, opening up new prospects for the future of humanity in space and I can only highly recommend it.

Giovanni F. Bignami
President, COSPAR and INAF (Italian National Institute for Astrophysics)
Milan, Italy, March 2, 2012

Figures

1.1 Distance law 6
1.2 Same as Figure 1.1, but in log-log scale 6
1.3 Comparing the two probability density functions of the random variable N found numerically and analytically 16
1.4 The probability of finding the nearest extraterrestrial civilization 19
1.B. 1 The simple function $y=\ln (x)$ 34
1.B. 2 Probability density function of $Y=\ln (N)$ computed numerically by virtue of the integral (1.B.39) 37
1.B. 3 The numeric probability density function curve $f_{N}(y)$ of the number N of extraterrestrial civilizations in the Galaxy according to the statistical Drake equation 38
1.B.4 Comparing the two probability density functions of the random variable N found numerically and analytically 47
1.B. 5 Comparing the two probability density functions of the random variable $Y=\ln (N)$ found numerically and analytically 50
1.B. 6 This is the probability of finding the nearest extraterrestrial civilization at the distance r from Earth if the values assumed in the Drake equation are those shown in Table 1.B. 1 60
3.1 Reproduction of p. 82 of Stephen H. Dole's book Habitable Planets for Man 112
3.2 The lognormal probability density of the overall number of habitable planets in the Galaxy as described in Stephen H. Dole's book Habitable Planets for Man 116
3.3 The Maccone probability distribution of the distance of the nearest habitable planet to us in the Galaxy using data of Input Table 3.1 assumed as inputs to the statistical Dole equation (3.3) 117
4.1 The lognormal distribution of the time needed to colonize each new planet in our statistical extension of the coral Galactic expansion model 138
4.2 The probability density function of the quotient of two positive random variables 140
4.3 The probability density function of the positive random variables, $T_{\text {Galaxy }}$, the time required to colonize the whole Milky Way Galaxy 142
5.1 Lognormal probability distribution of the number of ET technological civilizations if they last 45 years only 147
5.2 Probability distribution of the distance between any two nearby civilizations if they last only 45 years 148
5.3 Lognormal probability distribution of the number of ET technological civilizations that are likely to have lasted 90 million years. 150
5.4 Distribution of the distance between any two nearby civilizations lasting 90 million years 151
7.1 The b-lognormals of eight civilizations in human history and two exponential envelopes for them 188
7.2 The KLT dominant eigenvalue $\lambda_{1}(N)$ over $N=1,200$ time samples, computed by virtue of the BAM 424
8.1 Darwinian exponential curve representing the growing number of species on Earth up to now 217
8.2 Darwinian exponential as the envelope of b-lognormals 218
8.3 Darwinian exponential as the envelope of two important b-lognormals 220
10.1 History of astronomy as a cubic 252
10.2 Two cubics for the two different Copernicus points: the 1514 one and the 1543 one 260
10.3 History of SETI as a cubic-as usual, normalized to - 1 261
10.4 Combining the two cubics of astronomy and SETI and finding their intercept 262
10.5 The two cubics of SETI and of exoplanets intercept each other about May 1998 266
10.6 History of the unification of Europe as a cubic 268
10.7 Human life expectancy from the Paleolithic to the Neolithic, to Greco-Roman times, and finally to the present age 271
10.8 Life expectancy from Greco-Roman times to the present 272
10.9 Future life expectancy from the present to 1,000 years from now. 272
10.10 Future life expectancy from the present to 10,000 years from now 273
12.1 First ever conference about the FOCAL space mission to 550 AU , held on June 18, 1992, at the Politecnico di Torino (Turin, Italy) 337
12.2 Basic geometry of the gravitational lens of the Sun, showing the minimal focal length and the FOCAL spacecraft position 338
12.3 The principal ideas making up Chapters 12 through 16 of this book were first published in 1997 by the author in a short book entitled The Sun as a Gravitational Lens: Proposed Space Missions 347
13.1 Front and back covers of the author's book entitled Deep Space Flight and Communications: Exploiting the Sun as a Gravitational Lens 350
13.2 Enlarged part of the front cover of the author's 2009 book. 351
13.3 Another way of picturing Figure 12.2, this time with the two Archimedean spirals covered by the antennas. 352
13.4 Imagine the above two Archimedean spirals in parallel planes orthogonal to the axis FOCAL, Sun center, and Galactic center. Then, two similar triangles relate the FOCAL tether length, the FOCAL spacecraft distance from the Sun, and the size of the Galacxtic Black Hole 353
13.5 How the position angle is estimated through a telescope eyepiece 355
13.6 Apparent and true orbits of Alpha Centauri B around Alpha Centauri A 356
13.7 The Guggenheim Museum in New York City shown tilted by 90°, as if it were lying horizontally on the ground rather than vertically 357
14.1 How electrons in the Sun's corona push the true focus out 362
14.2 The complete belt of focal spheres between 550 and 17,000 AU from the Sun, as created by the gravitational lensing effect of the Sun and all planets, shown here to scale 365
14.3 The Sun as a gravitational lens 370
14.4 Jupiter as a gravitational lens 371
14.5 The Earth as a gravitational lens 371
14.6 Drake and Kraus gains of the Sun, Jupiter, and the Earth compared 372
15.1 The BER tends immediately to the 50% value even at moderate distances from the Sun for a 40-watt transmission from a DSN antenna that is a direct transmission 382
15.2 Same as Figure 15.1, but for probe distances up to 10 light-years 382
15.3 Same as Figure 15.2, but for probe distances up to 100 light-years 383
15.4 BER for the double-gravitational-lens radio bridge between the Sun and α Cen A 385
15.5 BER for the radio bridge between the Sun and α Cen A and for the radio bridge between the Sun and Barnard's Star 387
15.6 BER for the radio bridge between the Sun and α Cen A, for the radio bridge between the Sun and Barnard's Star, and for the radio bridge between the Sun and Sirius A 388
15.7 BER for the radio bridge between the Sun and α Cen A, for the radio bridge between the Sun and Barnard's Star, for the radio bridge between the Sun and Sirius A, and for a radio bridge between the Sun and another sun inside the Galactic Bulge 389
15.8 The same four BER curves as shown in Figure 14.7 plus the radio bridge between the Sun and another sun located somewhere in the Andromeda Galaxy 390
16.1 HST image of the Andromeda Galaxy core showing a possible double structure 396
16.2 BER for the radio bridge between the supermassive black hole at the center of our Milky Way Galaxy and the supermassive black hole at the center of Andromeda 397
16.3 The dwarf elliptical galaxy M32 398
16.4 BER for the radio bridge between the supermassive black hole at the center of our Milky Way Galaxy and the supermassive black hole at the center of M32, the dwarf elliptical galaxy shown in Figure 16.3 and a satellite of the Andromeda Galaxy M31 400
16.5 M106 and its anomalous arms 400
16.6 BER for the radio bridge between the supermassive black hole at the center of our Milky Way Galaxy and the supermassive black hole at the center of the M106 Anomalous Arms Galaxy shown in Figure 16.5 401
16.7 The Sombrero Galaxy (M104) as observed by the Spitzer 402
16.8 BER for the radio bridge between the supermassive black hole at the center of our Milky Way Galaxy and the supermassive black hole at the center of the M104 Sombrero Galaxy shown in Figure 16.7 403
16.9 The M87 elliptical supergiant galaxy at the center of the Local Supercluster of galaxies to which we belong 405
16.10 Hubble Space Telescope photo shows the jet of matter ejected from M87 at nearly light speed and nearly reaching us, as it stretches 5,000 light-years from the galactic core 405
16.11 BER for the radio bridge between the supermassive black hole at the center of our Milky Way Galaxy and the supermassive black hole at the center of the M87 Jet Galaxy shown in Figures 16.9 and 16.10. 406
17.1 Fourier spectrum of a pure tone with frequency at 300 Hz buried in stationary noise with an SNR of 0.5 424
17.2 The KLT dominant eigenvalue $\lambda_{1}(N)$ over $N=1,200$ time samples, computed by virtue of the BAM 424
17.3 The spectrum of the constant derivative of the KLT dominant eigenvalue $\lambda_{1}(N)$ with respect to N as given by the BAM 425
17.4 The spectrum of the first KLT eigenfunction obtained by the very long procedure of solving N linear algebraic equations corresponding, in discrete time, to the integral equation (17.18) 425
17.5 Fourier spectrum of a pure tone with frequency at 300 Hz buried in stationary noise with the terribly low SNR of 0.005 426
17.6 The KLT dominant eigenvalue $\lambda_{1}(N)$ for $N=1,200$ time samples, computed by virtue of the BAM, for the very low $\mathrm{SNR}=0.005$ 427
17.7 The spectrum of the constant derivative of the KLT dominant eigenvalue $\lambda_{1}(N)$ with respect to N as given by the BAM 427
17.8 The spectrum of the first KLT eigenfunction by the very long procedure of solving N linear algebraic equations 428
18.1 Decelerated motion of a relativistic spaceship approaching the Earth at the speed of light c down to speed zero in the finite time interval $0 \leq t \leq T$. 457
18.2 The time-rescaled Brownian motion $X(t)$ of (18.78) vs. the time t simulated as a random walk over 100 time instants 463
19.1 The time-rescaled Brownian motion $X(t)$ of (19.43) vs. time t simulated as a random walk over 100 time instants 478
21.1 Illustration of Brownian motion $B(t)$ vs. t 519
24.1 The zero-mean square Brownian motion $B^{2}(t)-t=X(t)$ vs. time t simulated as a random walk over 100 time instants 570
25.1 The zero-mean time-rescaled square Brownian motion $B^{2}\left(t^{2 H}\right)-t^{2 H}=X(t)$ vs. time t simulated as a random walk over 100 time instants 584
26.1 The KLT Bessel function order $\nu(t)$ is practically the same as the horizontal straight line of ordinate 1 that starts a little way from the origin and then on to infinity 588
27.1 A simple realization of the ordinary Brownian motion over 500 time instants 616
27.2 The same ordinary Brownian motion realization over 500 time instants, as shown in the previous Figure 27.1, plus its two KLT reconstructions made by taking into account just the first 10 eigenfunctions of 500 617
27.3 A new, simple realization of the ordinary Brownian motion $B(t)$ over 500 time instants 619
27.4 Showing the stochastic process $X(t)=B^{2}(t)-t$ for the same realization of $B(t)$ shown in Figure 27.3 620
27.5 A new, simple realization of the ordinary Brownian motion $B(t)$ over 500 time instants 622
27.6 The time dilation effect of special relativity forces the proper time τ to range only from 0 to 433 623
28.1 Illustration of the eigenspace with $p=2$ 627
28.2 KLT applied to a Brownian motion dataset of 1 million points 630
28.3 Typical eigenvalues plotted by their amplitude 631
28.4 Illustration of data compression of $\sin (x)$ 631
28.5 Illustration of data compression of a Brownian motion 632
28.6 Illustration of infrared spectra taken on a rock containing endoliths 634
28.7 Spectral classification of biomarkers and other samples using SVD 635
28.8 Comparison between the FFT and the KLT in the case of a very noisy signal 637
28.9 Example of KLT applied to a signal with four frequencies 638
28.10 FFT of the signal from Figure 28.9 639
28.11 Eigenvalues from the signal shown in Figure 28.10 639
28.12 Example of a BPSK signal with an $\mathrm{SNR}=-19 \mathrm{~dB}$ 640
28.13 Example of an image generated by the superposition of 80 (out of 7,040) eigenimages 641
28.A. 1 Examples of the content of the file plot_final 655
29.1 A photo of the farside of the Moon, the two parallels at $\pm 30^{\circ}$, and the PAC 660
29.2 The five Earth-Moon Lagrangian points 662
29.3 The simple geometry defining the terminal longitude λ on the farside of the Moon 663
29.4 Terminal longitude λ on the Moon farside vs. telecom satellites' orbital radius R around the Earth. 664
29.5 An oblique view of the Daedalus crater on the lunar farside as seen from the Apollo 11 spacecraft in lunar orbit 666
29.6 The author's vision for the Moon's farside and its protection from RFI 667
29.7 In addition to the five Lagrangian points of the Earth-Moon system the next two closest Lagrangian points to the Earth are L1 and L2 of the Sun-Earth system 668
29.8 Countries that signed and ratified the Outer Space Treaty of 1967 and countries that signed but did not ratify it 672
29.9 Countries that signed and ratified the Moon Treaty of 1979 and countries that signed but did not ratify it 672
29.10 Much of the area around the south pole is within the South Pole-Aitken Basin, a giant impact crater $2,500 \mathrm{~km}$ in diameter and 12 km deep at its lowest point 674
29.11 The author's speech at the United Nations COPUOS in Vienna, Austria, on June 10, 2010 675
30.1 Exponential curve in time as the envelope of b-lognormals or, more correctly, as the geometric locus of all peaks (i.e., of all ordinates) of the b-lognormals having different peaks in time 690

Tables

1.1 Summary of the properties of the lognormal distribution 14
1.2 Summary of the properties of the probability distribution that apply to the random variable ET_Distance 18
1.B. 1 Input values for the seven Drake uniform random variables D_{i} 33
1.B. 2 Summary of the properties of the lognormal distribution that apply to the random variable $N=$ number of ET communicating civilizations in the Galaxy 46
1.B.3 Summary of the properties of the probability distribution that applies to the random variable ET_Distance 59
3.1 Comparing the results of the statistical Dole and Drake equation found by inputting Input Table 3.1 and Table 1.1, respectively 119
8.1 Summary of the statistical properties of the new random variable NoEv given by equation (8.16) 221
9.1 Summary of the properties of the lognormal-over-lognormal distribution. 243
10.1 Life expectancy in history 269
11.1 Summary of the properties of the lognormal distribution that apply to the stochastic process $N(t)=$ exponentially increasing number of ET communicat- ing civilizations in the Galaxy. 300
11.2 Summary of the properties of the time-evolving Maccone distribution of the stochastic process $D(t)=$ distance decreasing in time between any two nearby ET communicating civilizations in the Galaxy 305
12.1 The gain of the Sun's lens alone, the gain of a spacecraft's 12-meter antenna, and the combined gain of the $S u n+S / C$ antenna system at five selected frequencies important in radioastronomy 341
12.2 Image sizes for a 12-meter antenna, located at distances of $550 \mathrm{AU}, 800 \mathrm{AU}$, and $1,000 \mathrm{AU}$ from the Sun for the five selected frequencies 342
12.3 Image size vs. antenna radius for a 12-meter antenna located at various distances from the Sun for the five selected frequencies 343
12.4 HPBW vs. aspect angle of the Sun for a 12-meter antenna located at various distances from the Sun for the five selected frequencies 344

1 Tables

12.5 Angular resolution for three spacecraft distances ($550 \mathrm{AU}, 800 \mathrm{AU}$, and $1,000 \mathrm{AU}$) at the five selected frequencies 345
12.6 Spatial resolution of astronomical objects at selected distances from the Sun for a spacecraft's 12 -meter antenna 346
14.1 Radii of the minimal focal spheres of the naked Sun, coronal Sun, Jupiter, Neptune, Saturn, the Earth, Uranus, Venus, Mars, and Mercury 363
14.2 The gain of the Sun's lens alone, the gain of a 12-meter spacecraft antenna, and the combined gain of the Sun $+\mathrm{S} / \mathrm{C}$ antenna system at five selected frequencies important in radioastronomy 367
14.3 Drake and Kraus antenna gains at selected ν for the Sun, Jupiter, and the Earth as gravitational lenses 373
18.1 Stability criterion for the relativistic eigenfunctions $\phi_{n}(t)$ 453
18.2 Approximate values of the constants γ_{n} 461
19.1 Noise asymptotic total energy 481
19.2 Noise exact total energy 483
22.1 Stability criterion for eigenfunctions $\phi_{n}(t)$ 546
23.1 Approximate values of the constants γ_{n} 554
28.1 Comparison between Jacobi, QR algorithm, and Lanczos 625
29.1 Radiowave attenuation in the lunar equatorial plane and at lunar longitude $\lambda=180^{\circ}$ for radio sources emitting at $100 \mathrm{kHz}, 100 \mathrm{MHz}$, and 100 GHz , respectively 669
29.2 Attenuation in the lunar equatorial plane and at lunar longitude at $\lambda=180^{\circ}$ for radiowaves having some of the most important frequencies used by radioastronomers to explore the Universe 670
INPUT TABLES
1.1 Input values for the seven Drake uniform random variables D_{i} 15
1.B.1 Input values for the seven Drake uniform random variables D_{i} 33
3.1 Input values for the 10 Dole uniform random variables D_{i} 115
5.1 The numerical values of the first six inputs to the classical Drake equation (5.1) for the example provided by Carl Sagan in his book Cosmos 146
5.2 Input value of $f L$ for a technological civilization that survives only 45 years of its own technological adolescence 147
5.3 Input value of $f L$ for a technological civilization that survives 90 million years 149

Abbreviations and acronyms

ALMA	Atacama Large Millimeter/submillimeter Array
ATA	Allen Telescope Array
BAM	Bordered Autocorrelation Method
BER	Bit Error Rate
BPP	Breakthrough Propulsion Physics (program)
CLT	Central Limit Theorem
CFHT	Canada-France-Hawaii Telescope
CLOE	Common Lisp Oriented Environment for PCs by
	Symbolics
CMB	Cosmic Microwave Background
DSN	Deep Space Network
DOE	Department Of Energy (U.S.)
FFT	Fast Fourier Transform
FT	Fourier Transform
FTL	Faster Than Light
GPL	General Public License
HARPS	High Accuracy Radial Velocity Planet Searcher
HPBW	Half Power Beam Width
KL	Karhunen-Loève
KLT	Karhunen-Loève Transform
IAC	International Astronautical Congress
LAPACK	Linear Algebra PACKage
LOFAR	LOw Frequency ARray
LU	LU factorization (decomposition) of a matrix
MACSYMA	Project MAC's SYmbolic MAnipulator
MIT	Massachusetts Institute of Technology
MKS	Meter Kilogram Second system of units
NESC	National Energy Software Center

lii Abbreviations and acronyms

NCP	North Celestial Pole
OHP	Observatoire de Haute Provence
PCA	Principal Components Analysis
pdf	probability density function
PA	Position Angle
SETI	Search for ExtraTerrestrial Intelligence
SKA	Square Kilometer Array
SIM	Space Interferometry Mission
SVD	Singular Value Decomposition
TPF	Terrestrial Planet Finder
VLSI	Very Large Scale Integration

