Put your systems on an Aluminium diet
Applying well-known materials using innovative manufacturing techniques.
(Extreme lightweighting, direct Al polishing)
Ronald Halfwerk, Rik ter Horst, Niels Tromp
Put your systems on an Aluminium diet

Applying well-known materials using innovative manufacturing techniques.
(Extreme lightweighting, direct Al polishing)

Ronald Halfwerk, Rik ter Horst, Niels Tromp

Issues for cryogenic instrumental design:

- CTE differences (bimetallic effect, lens mounts)
- Vacuum
- Unknown or unpredictable behavior at low temperatures (Composites)
- Weight
- Stiffness

Design strategy:

Design with only *one well known material* for both, optics and mechanics, as much as possible

Temperature Invariant System

Manufacture to accuracy
(no adjustments)
Our choice: Aluminium

- Conventional material with well-known material properties
- Used for both mechanical structure and mirrors

Applying:

New production methods:
- 5-axis simultaneous milling

New design techniques and strategies:
- Extreme lightweighting of mechanical structures

New polishing techniques:
- Direct optical polishing of aluminium surfaces
Direct polishing of aluminum surfaces (for optical grade surfaces)

Why using this technique?:
- Avoid bimetallic effect
- Accurate and smooth surface figure
- Low light scattering
- In-house manufacturing

Scattering comparison (laser 543 nm)

Diamond turned sample Polished sample

5-axis milling (= common practice)

A typical 5-axis milling machine.

Example of configuration of milling axes of a 5-axis milling machine.
Put your systems on an Aluminium diet
Applying well-known materials using innovative manufacturing techniques.
(Extreme lightweighting, direct Al polishing)
Ronald Halfwerk, Rik ter Horst, Niels Tromp

Using Astron Xtreme Light Weighting

- Title: CONSTRUCTION ELEMENT, METHOD AND APPARATUS FOR MANUFACTURING A CONSTRUCTION ELEMENT, COMPUTER PROGRAM AND MIRROR

Traditional v.s. New method
Put your systems on an Aluminium diet

Applying well-known materials using innovative manufacturing techniques.

(Extreme lightweighting, direct Al polishing)

Ronald Halfwerk, Rik ter Horst, Niels Tromp

Comparing open vs closed back light weighting

<table>
<thead>
<tr>
<th>Part #</th>
<th>Light weighting method</th>
<th>Wall thickness</th>
<th>Mass</th>
<th>Displacement</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open back</td>
<td>2</td>
<td>100</td>
<td>4.8E-4</td>
<td>0.529</td>
</tr>
<tr>
<td>2</td>
<td>Closed back</td>
<td>1.48</td>
<td>100</td>
<td>3.45E-4</td>
<td>0.374</td>
</tr>
<tr>
<td>3</td>
<td>Closed back</td>
<td>0.6</td>
<td>510</td>
<td>4.34E-4</td>
<td>0.250</td>
</tr>
</tbody>
</table>

~ -50% of mass reduction but retained stiffness!

Lose weight without penalty to stiffness

New Principle of light weighting

- creating the pockets from two or more sides in such a way that they will form an efficient structure
Put your systems on an Aluminium diet
Applying well-known materials using innovative manufacturing techniques.
(Extreme lightweighting, direct Al polishing)
Ronald Halfwerk, Rik ter Horst, Niels Tromp

Advantages Astron X L W
In general:
- Higher stiffness to weight ratio
- Higher natural frequency
- Monolithic and Homogenous
- Thinner and higher rib/wall production possible (~0.3 mm/100 mm), because all sides of the ribs and walls are interconnected
- Reduction of part size for same stiffness
- Reducing part count (no lid + bolds)
- Highly symmetrical structures (less problems with global deformation due to internal stress)
- More freedom of design

For Cryogenic applications:
- Better heat transfer because of shape of structure
- Shorter cooling/heating cycle

Disadvantages Astron X L W
In general:
- More complex in design and manufacturing
- Design and production both require more complex CAM soft- and hardware
- Longer milling times
- For a given part size a larger (5-axis simultaneous) milling machine is needed
- Outsourcing of parts is less likely because of complexity and the need for increased communication (Design for Manufacturing)

In Cryogenic applications:
- Internal cleaning might be more difficult

In Optical applications:
- Because of holes and intersecting pockets: unwanted light can exit

© 2008, 2009 ASTRON
Dwingeloo, the Netherlands
Reproduction in whole or in part is prohibited without written consent of the author.
Competitive Alternatives:

- Carbon Fiber Reinforced Polymer (CFRP)
 - + very strong structures
 - - CFRP is a radical change in design/manufacturing technology (€++)
- Honeycomb glued structures
 - + Cost effective
 - - less freedom of design
- In general:
 - AXLW has smooth transition to (future) ceramics materials

Case study light weighting:
Spectrometer Main Optics (SMO) of MIRI

James Webb Space Telescope

Typical 1 m.
Case study* – Basic additional costs due to light weighting

- Design time (approx 20%++)
- Production time (approx 2x)
- Additional R&D, extra fixtures, testing (non-linear increase), see table below

<table>
<thead>
<tr>
<th>Amount of closed back light weighting used (90% lw)</th>
<th>0%</th>
<th>12.5%</th>
<th>25%</th>
<th>37.5%</th>
<th>50%</th>
<th>62.5%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change of SMO mass, kg</td>
<td>0</td>
<td>-1.2</td>
<td>-2.4</td>
<td>-3.5</td>
<td>-4.7</td>
<td>-5.9</td>
<td>-7.1</td>
</tr>
<tr>
<td>Increase in additional costs</td>
<td>0%</td>
<td>11%</td>
<td>14%</td>
<td>18%</td>
<td>24%</td>
<td>37%</td>
<td>65%</td>
</tr>
</tbody>
</table>

Case study SMO – assumptions

Into account is taken, for the Spectrometer Main Optics (SMO):
- Currently known total SMO mass is 21kg (open back light weighting method used)
- Only 90% of total SMO mass is light weightable
- Of all light weightable mass (18.9kg) only for 75% can be switched to light weighted with the new method, the rest is not suited. So at least 25% will always be light weighted with the old method.
- Traditional method light weights to around 80%, new method about 90%
- Out of a total SMO cost of $5.5 million, $1.2 mln is for design and production (44% for design, 56% for production)

And for MIRI:
- Total estimated cost $169.- mln.
- 1 kg of SMO weight reduction equals about 1 kg of solid coolant extra in space
- 1 kg of solid coolant equals about 3 months lifetime, equals roughly 1 month viewing time (JWST has three instruments)
- An estimated lifetime of 10 years
Case study SMO – Increase in total cost

Increase in total cost in relation to SMO mass reduction due to the use of closed back light weighting (non-linear increase in additional costs included)

<table>
<thead>
<tr>
<th>SMO mass, kg</th>
<th>21</th>
<th>19.8</th>
<th>18.6</th>
<th>17.5</th>
<th>16.3</th>
<th>15.1</th>
<th>13.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>100%</td>
<td>114%</td>
<td>120%</td>
<td>127%</td>
<td>136%</td>
<td>154%</td>
<td>190%</td>
</tr>
<tr>
<td>(weighted 44%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>100%</td>
<td>118%</td>
<td>128%</td>
<td>140%</td>
<td>155%</td>
<td>180%</td>
<td>229%</td>
</tr>
<tr>
<td>(weighted 56%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>116%</td>
<td>125%</td>
<td>134%</td>
<td>147%</td>
<td>169%</td>
<td>211%</td>
</tr>
</tbody>
</table>

Case study light weighting: Spectrometer Main Optics (SMO) of MIRI

- Conclusion: using the new method on 50% of the light weightable mass at an SMO cost of almost 6.1 mln dollars (=0.5% MIRI budget) will increase the MIRI viewing time with almost 5 months.
Put your systems on an Aluminium diet
Applying well-known materials using innovative manufacturing techniques.
(Extreme lightweighting, direct Al polishing)
Ronald Halfwerk, Rik ter Horst, Niels Tromp

First application of AXLW in the X-shooter spectrograph:

Cold optics box
Balance arm

© 2008, 2009 ASTRON

General applications of Astron Xtreme Light Weighting:

- In small structures: maintaining stiffness
- In large structures: reducing weight
- Thin walled structures: reducing buckling
- Applicable materials for AXLW:
 - All materials suitable for milling
 - All materials suitable for ultrasonic machining

© 2008, 2009 ASTRON
Put your systems on an Aluminium diet
Applying well-known materials using innovative manufacturing techniques.
(Extreme lightweighting, direct Al polishing)
Ronald Halfwerk, Rik ter Horst, Niels Tromp

On New Business Development
-Different shapes for AXLW

On New Business Development
-Application overview Xtreme Light Weighting

Possible areas of application are applications that can be related to:
- Extremely low weight structures
- High stiffness/strength to weight ratios (optical, aerospace, pick-and-place)
- Monolithic parts
- Homogenous material properties (cryogenics)
- High accelerations of parts (mechanisms, robotics, photolithography, launch into space, racing engines)
- ‘By design’ higher natural frequency (launch into space)
- Longer instrument lifespan (cryogenic space application)
- A small space envelope (miniaturization, reduced part size for same stiffness)
Application domains and applicable materials (summary)

The envisaged application domains are:
- 1. High-speed precision positioning systems
- 2. Avionics
- 3. Space applications (as pay-load e.q. instruments and equipment)

General applications of Astron Xtreme Light Weighting are:
- In small structures: maintaining stiffness
- In large structures: reducing weight
- Thin walled structures: reducing buckling

Applicable materials for eXtreme Light weighting are:
- All materials suitable for milling
- All materials suitable for ultrasonic machining

Acknowledgements:
Niels Tromp (Inventor), Ramón Navarro, Rik ter Horst

Thank you for your attention
Put your systems on an Aluminium diet

Applying well-known materials using innovative manufacturing techniques.

(Extreme lightweighting, direct Al polishing)

Ronald Halfwerk, Rik ter Horst, Niels Tromp

This patented ‘Extreme lightweighting technology’ is available through licensing and technology transfer programmes.

CONTACT:

- For technical inquiries:
 - MR. Johan Pragt, (ASTRON Section Head Mechanical Department)
 - Tel +31 521 595 277
 - e-mail: pragt@astron.nl

- For contractual matters and technology transfer in general
 (ASTRON Bureau of Technology Transfer)
 (For contractual matters and technology transfer in general)
 - Ronald Halfwerk
 - Phone: +31 (0)521- 595 286
 - halfwerk@astron.nl
 - www.astron.nl