Figure 1: The effect of an extended source on short baselines. Ripples are present both on CS and RS, while for most of the IS the signal to noise is too low, therefore we see the signal of all the correlations at the level.

Figure 2: The effect of an extended source on long baselines. Ripples almost disappear both from CS and RS.

In CS013 dipoles are rotated of 45 degrees, so the sensitivity is lower with respect to the other stations.

These plots show all visibilities for short, intermediate and long baselines where CS002, CS004, RS307, RS508 are used as references.
In CS013 dipoles are rotated of 45 degrees, so the sensitivity is lower with respect to the other stations.

Figure 3: Shows connection problem at the beginning of the observation for all stations. The same pattern could be present when data loss is experienced on a single station for instance.

Figure 4: Shows a misbehaving station (RS409), in which oscillating dipoles generate internal interferences.
These plots show the visibility average amplitude for short, intermediate and long baselines where CS002, CS004, RS307, RS508 are used as references.

Figure 5: Shows the visibility amplitude per baseline using a reference station. Stations with the same characteristics, e.g. all CS should have more or less the same amplitudes; when their values differ too much the sensitivity of the station is not good (in this case RS409). Since many factors contribute to these values it is always good to check on a long baseline a frequency with high S/N which is relatively clean of interferences (e.g. correlator SB 77 in HBA and 301-302 in LBA). A way to identify the presence of Solar bursts is to check if the amplitude visibilities scales of CS have much higher values than the remote station or CS in quiet conditions.

Figure 6: Shows the visibility amplitude per baseline using a reference station for a bright calibrator (3C196) which is resolved at long baselines. The reason why we see different amplitudes values among RS and IS is due to the fact that some baseline detect and resolve source structure and some other do not. Knowing the layout of the telescope and the characteristics of the source are the key to interpret this plots.
Figure 7: Shows the standard deviation and the mean of the flagged visibilities. To be good this plots should show a uniform grey scale. When the scale is not constant there should be an increased amount of flags in those stations. This allow to catch very mild effects that are recognizable in other plots.

Figure 8: Shows the flagged visibilities and the zeroes. The aim is for a non grey plot.